Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Appl Microbiol Biotechnol ; 107(2-3): 543-552, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36504328

RESUMEN

While previous studies mainly focused on the total number of spores as an index to predict the calcium precipitation activity (CPA) of bacterial strains, the effect of viability of spores on microbial-induced calcium precipitation (MICP) has remained highly ignored. Therefore, for the first time, we have attempted to optimize the sporulation process in terms of viable spore production and, most importantly, aimed to build a correlation between viable spores and CPA. The results have shown that for the sporulation of Bacillus sp. H4, starch and peptone are the optimal carbon and nitrogen sources, respectively. One gram per liter of sodium chloride promotes CPA and production of viable spores, whereas an increase of sodium chloride concentration beyond 8 g L-1 significantly reduces CPA without reducing the quantity of viable spores. Exogenous conditions such as seed age, inoculation quantity, and liquid volume only pose slight influence on the sporulation and CPA. Conclusively, the spores produced under optimized conditions are more morphologically uniform and display a 20% increase in CPA compared to pre-optimized spores. Furthermore, by combining the results of heatmap analysis, it can be concluded that not only the quantity, but also the quality of viable spores is important for bacterial strain to develop high CPA and effective MICP process. This study sheds light on the breadth of biomineralization activity based on viable spores and is an imperative step toward the intelligible design of MICP-based engineering solutions. KEY POINTS: • Viability of spores is a key controlling factor in calcium precipitation activity (CPA). • Spores produced under optimized conditions display a 20% increase in CPA. • Quality of viable spores is imperative for bacterial strains to develop high CPA.


Asunto(s)
Bacillus , Carbonato de Calcio , Calcio , Cloruro de Sodio , Esporas Bacterianas , Bacterias , Precipitación Química , Viabilidad Microbiana
2.
Microb Pathog ; 170: 105692, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35921952

RESUMEN

Bovine mastitis is a disease that is widespread in dairy cows worldwide, and its impact is significant due to economic losses at all levels of the dairy value chain. For a long time, antibiotics have been the main tool for curing mastitis, however the cure rate is not very high, and sometime side effects may occur. Therefore, an in-depth understanding of mastitis and effective solutions are urgently needed to resolve the problem that in what way to prevent and treat mastitis in order to protect the profitability of dairy farms. The importance of diet in the regulation of health are not novel. Dietary control of the intestinal flora provides a promising approach to prevent or treat certain deadly diseases. Ample amount of studies has been conducted on the role of short-chain fatty acids (SCFAs) in the maintenance of health. SCFAs are the type of dietary substance that has the ability to restore blood-milk barrier permeability, inhibit the development of mammary inflammation, and are also effective epigenomic modifiers with histone deacetylases inhibitory activity. To date, the detailed mechanism of action of SCFAs in treating mastitis is unclear, but preliminary evidences are emerging. To assess the effectiveness of this recommendation, we examined the overall mammary gland health knowledge related to SCFAs by scrutinizing their potential role and evaluating its compatibility with the immunobiology of mammary gland inflammation. We then considered preliminary in vivo and in vitro experiments and analyzed the literature on the subject. Here, we outline the production of SCFAs and its protective effect on the mammary gland, with particular emphasis on their relevance to mastitis. In addition, we also discussed the therapeutic potential of SCFAs for mammary gland inflammation. Expectantly, this theory will provide new perception for the treatment of mastitis and other infectious diseases.


Asunto(s)
Mastitis Bovina , Animales , Bovinos , Ácidos Grasos Volátiles/uso terapéutico , Femenino , Humanos , Inflamación , Glándulas Mamarias Animales , Mastitis Bovina/tratamiento farmacológico , Mastitis Bovina/prevención & control , Leche , Nutrientes
3.
Biotechnol Appl Biochem ; 69(5): 2008-2016, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34605559

RESUMEN

This study reports the increment in the secondary metabolites in Stevia rebaudiana plant after exposure to the elimination of Ca and Mg from Murashige and Skoog culture medium. The effect of nutrient stress on regenerants of S. rebaudiana is measured, which reveals significantly enhanced growth parameters, steviol glycosides (SGs) content, and nonenzymatic antioxidants; total phenolic content, total flavonoid content, total antioxidant capacity, total reducing power, and DPPH-free radical scavenging activity as compared with the control treatment. However, significantly highest amounts are obtained in a medium with only Ca deficiency. The amount of rebaudioside A (Reb A) and stevioside (ST) obtained in the case of Ca-deficient medium is 4.08 and 0.69%, respectively. It is followed by the results obtained from both Ca- and Mg-deprived medium [Reb A (3.23%) and ST (0.52%)] and the lowest values are obtained from medium lacking Mg only [Reb A (2.60%) and ST (0.40%)]. The most probable adaptation mechanism might be the production of reactive oxygen species by nutrients' stress, which results in secondary metabolites production as defensive moieties to overcome stress situation. This effective protocol needs to be refined to apply on an industrial scale in bioreactors for increasing quantities of commercially important pharmaceutical compounds.


Asunto(s)
Stevia , Stevia/metabolismo , Magnesio/metabolismo , Calcio/metabolismo , Biomasa , Hojas de la Planta/metabolismo , Antioxidantes/farmacología , Preparaciones Farmacéuticas
4.
Molecules ; 25(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192031

RESUMEN

Sustainable production of secondary metabolites in medicinal plants by artificial culturing on the industrial scale has gained worldwide importance. Engineered nanoparticles (ENPs) play a pivotal role in the elicitation of compounds of medicinal value. This investigation explores the influence of ZnO and CuO ENPs on in vitro roots formation, non-enzymatic antioxidant activities, and production of steviol glycosides (SGs) in regenerants of Candyleaf, Stevia rebaudiana. ENPs were applied in 0, 2, 20, 200, and 2000 mg/L of concentration in the MS medium containing plant shoots. The percentage of rooting induced was 91% and 94% by applying ZnO ENPs (2 mg/L) and CuO ENPs (20 mg/L), respectively. Moreover, at 2 mg/L of ZnO and 20 mg/L of CuO ENPs, the high performance liquid chromatography studies determined the significantly greatest content of SGs; rebaudioside A (4.42 and 4.44) and stevioside (1.28 and 1.96). Phytochemical studies including total flavonoid content, total phenolic content, and 2,2-diphenyl-1-picryl hydrazyl-free radical scavenging activity were calculated highest by the regenerants grown in 2 mg/L of ZnO and 20 mg/L of CuO ENPs dosage. Both ZnO and CuO ENPs at 200 mg/L and 2000 mg/L of concentration induced adverse effects on plant biomass, antioxidant activities, and SGs content up to 1.22 and 1.77 for rebaudioside A and 0.21 and 0.25 for stevioside. Hence, the biochemical and morphophysiological responses of Candyleaf were elicited as a defense against ZnO and CuO ENPs applied under threshold limit. This artificial biotechnological technique holds great promise for continued production of natural antioxidants on commercial scale and our study has further strengthened this impact.


Asunto(s)
Cobre/farmacología , Nanopartículas/química , Nanotecnología , Regeneración/efectos de los fármacos , Stevia/anatomía & histología , Stevia/fisiología , Técnicas de Cultivo de Tejidos , Óxido de Zinc/farmacología , Antioxidantes/farmacología , Diterpenos de Tipo Kaurano/análisis , Glucósidos/análisis , Nanopartículas/ultraestructura , Electricidad Estática , Stevia/efectos de los fármacos , Difracción de Rayos X
5.
Molecules ; 24(21)2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671678

RESUMEN

Nitrogen-doped and undoped titanium dioxide nanoparticles were successfully fabricated by simple chemical method and characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and transmission electron microscopy (TEM) techniques. The reduction in crystalline size of TiO2 nanoparticles (from 20-25 nm to 10-15 nm) was observed by TEM after doping with N. Antibacterial, antifungal, antioxidant, antidiabetic, protein kinase inhibition and cytotoxic properties were assessed in vitro to compare the therapeutic potential of both kinds of TiO2 nanoparticles. All biological activities depicted significant enhancement as a result of addition of N as doping agent to TiO2 nanoparticles. Klebsiella pneumoniae has been illuminated to be the most susceptible bacterial strain out of various Gram-positive and Gram-negative isolates of bacteria used in this study. Good fungicidal activity has been revealed against Aspergillus flavus. 38.2% of antidiabetic activity and 80% of cytotoxicity has been elucidated by N-doped TiO2 nanoparticles towards alpha-amylase enzyme and Artemia salina (brine shrimps), respectively. Moreover, notable protein kinase inhibition against Streptomyces and antioxidant effect including reducing power and % inhibition of DPPH has been demonstrated. This investigation unveils the more effective nature of N-doped TiO2 nanoparticles in comparison to undoped TiO2 nanoparticles indicated by various biological tests. Hence, N-doped TiO2 nanoparticles have more potential to be employed in biomedicine for the cure of numerous infections.


Asunto(s)
Nanopartículas/uso terapéutico , Nitrógeno/química , Titanio/uso terapéutico , Animales , Antibacterianos/farmacología , Antifúngicos/farmacología , Antioxidantes/farmacología , Artemia/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Hipoglucemiantes/farmacología , Pruebas de Sensibilidad Microbiana , Nanopartículas/ultraestructura , Tamaño de la Partícula , Inhibidores de Proteínas Quinasas/farmacología , Difracción de Rayos X
6.
Plant Physiol Biochem ; 201: 107807, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37311291

RESUMEN

Nanotechnology has recently been emerged as a transformative technology that offers efficient and sustainable options for nano-bio interface. There has been a considerable interest in exploring the factors affecting elicitation mechanism and nanomaterials have been emerged as strong elicitors in medicinal plants. Stevia rebaudiana is well-known bio-sweetener and the presence of zero calorie, steviol glycosides (SGs) in the leaves of S. rebaudiana have made it a desirable crop to be cultivated on large scale to obtain its higher yield and maximal content of high quality natural sweeteners. Besides, phenolics, flavonoids, and antioxidants are abundant in stevia which contribute to its medicinal importance. Currently, scientists are trying to increase the market value of stevia by the enhancement in production of its bioactive compounds. As such, various in vitro and cell culture strategies have been adopted. In stevia agronanotechnology, nanoparticles behave as elicitors for the triggering of its secondary metabolites, specifically rebaudioside A. This review article discusses the importance of S. rebaudiana and SGs, conventional approaches that have failed to increase the desired yield and quality of stevia, modern approaches that are currently being applied to obtain utmost benefits of SGs, and future needs of advanced technologies for further exploitation of this wonder of nature.


Asunto(s)
Diterpenos de Tipo Kaurano , Stevia , Stevia/metabolismo , Glucósidos/metabolismo , Edulcorantes/metabolismo , Flavonoides/metabolismo , Diterpenos de Tipo Kaurano/metabolismo , Hojas de la Planta/metabolismo , Glicósidos/metabolismo
7.
Plant Physiol Biochem ; 202: 107944, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37579682

RESUMEN

Nanotechnology has emerged as a key empowering technology for agriculture production due to its higher efficiency and accurate target delivery. However, the sustainable and effective application of nanotechnology requires nanomaterials (NMs) to have higher stability and less aggregation/coagulation at the reaction sites. This can ideally be achieved by modifying NMs with some surfactants or capping agents to ensure higher efficiency. These modified nanomaterials (MNMs) stabilize the interface where NMs interact with their medium of preparation and showed a significant improvement in mobility, reactivity, and controlled release of active ingredients for nano-enabled agriculture. Several environmental factors (e.g., pH, organic matter and the oxidation-reduction potential) could alter the interaction of MNMs with agricultural plants. Firstly, this novel review article introduces production technologies and a few frequently used modification agents in synthesizing MNMs. Next, we critically elaborate the leveraging progress in the modified nano-enabled agronomy and unveil their phytoremediation potential. Lastly, we propose a framework to overcome current challenges and develop a strategy for safe, effective and acceptable applications of MNMs in nano-enabled agriculture. However, the long-term effectiveness and reactivity of MNMs should be investigated to assess their technology effectiveness and optimize the process design to draw definite conclusions.


Asunto(s)
Nanoestructuras , Agricultura , Nanotecnología , Plantas
8.
Sci Total Environ ; 904: 166438, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37633397

RESUMEN

The increasing footprints of lithium (Li) in agroecosystems combined with limited recycling options have raised uncertain consequences for important crops. Nitrogen (N2)-fixation by legumes is an important biological response process, but the cause and effect of Li exposure on plant root-nodule symbiosis and biological N2-fixation (BNF) potential are still unclear. Soybean as a model plant was exposed to Li at low (25 mg kg-1), medium (50 mg kg-1), and high (100 mg kg-1) concentrations. We found that soybean growth and nodulation capacity had a concentration-dependent response to Li. Li at 100 mg kg-1 reduced the nodule numbers, weight, and BNF potential of soybean in comparison to the low and medium levels. Significant shift in soybean growth and BNF after exposure to Li were associated with alteration in the nodule metabolic pathways involved in nitrogen uptake and metabolism (urea, glutamine and glutamate). Importantly, poor soybean nodulation after high Li exposure was due in part to a decreased abundance of bacterium Ensifer in the nodule bacterial community. Also, the dominant N2-fixing bacterium Ensifer was significantly correlated with carbon and nitrogen metabolic pathways. The findings of our study offer mechanistic insights into the environmental and biological impacts of Li on soybean root-nodule symbiosis and N2-acquisition and provide a pathway to develop strategies to mitigate the challenges posed by Li in agroecosystems.


Asunto(s)
Glycine max , Fijación del Nitrógeno , Nodulación de la Raíz de la Planta , Litio , Proteínas de Plantas/metabolismo , Simbiosis , Nitrógeno/metabolismo
9.
Bioeng Transl Med ; 8(4): e10435, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37476051

RESUMEN

Peripheral nerve regeneration after injury is still a clinical problem. The application of autologous nerve grafting, the gold standard treatment, is greatly restricted. Acellular nerve allografts (ANAs) are considered promising alternatives, but they are difficult to achieve satisfactory therapeutic outcomes, which may be attributed to their compact inherent ultrastructure and substantial loss of extracellular matrix (ECM) components. Regarding these deficiencies, this study developed an optimized multichannel ANA by a modified decellularization method. These innovative ANAs were demonstrated to retain more ECM bioactive molecules and regenerative factors, with effective elimination of cellular antigens. The presence of microchannels with larger pore size allowed ANAs to gain higher porosity and better swelling performance, which improves their internal ultrastructure. Their mechanical properties were more similar to those of native nerves. Moreover, the optimized ANAs exhibited good biocompatibility and possessed significant advantages in supporting the proliferation and migration of Schwann cells in vitro. The in vivo results further confirmed their superior capacity to promote axon regrowth and myelination as well as restore innervation of target muscles, leading to better functional recovery than the conventional ANAs. Overall, this study demonstrates that the optimized multichannel ANAs have great potential for clinical application and offer new insight into the further improvement of ANAs.

10.
J Hazard Mater ; 443(Pt B): 130309, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36356523

RESUMEN

Eco-toxicological estimation of cadmium induced damages by morpho-physiological and cellular response could be an insightful strategy to alleviate negative impact of Cd in agricultural crops. The current study revealed novel patterns of Cd-bioaccumulation and cellular mechanism opted by alfalfa to acquire Cd tolerance under various soil applied zinc oxide nanoparticles (nZnO) doses (0, 30, 60, 90 mg kg-1), combined with 2% biochar (BC). Herein, the potential impact of these soil amendments was justified by decreased Cd and increased Zn-bioaccumulation into roots by 38 % and 48 % and shoots by 51 % and 72 % respectively, with co-exposure of nZnO with BC. As, the transmission electron microscopy (TEM) and scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) ultrastructural observations confirmed that Cd-exposure induced stomatal closure, and caused damage to roots and leaves ultrastructure as compared to the control group. On the contrary, the damages to the above-mentioned traits were reversed by a higher nZnO dose, and the impact was further aggravated by adding BC along nZnO. Furthermore, higher nZnO and BC levels efficiently alleviated the Cd-mediated reductions in alfalfa biomass, antioxidant enzymatic response, and gaseous exchange traits than control. Overall, soil application of 90 mg kg-1 nZnO with BC (2 %) was impactful in averting Cd stress damages and ensuring better plant performance. Thereby, applying soil nZnO and BC emerge as promising green remediation techniques to enhance crop tolerance in Cd-polluted soil.


Asunto(s)
Contaminantes del Suelo , Óxido de Zinc , Cadmio/química , Medicago sativa , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Contaminantes del Suelo/análisis , Suelo/química
11.
Chemosphere ; 310: 136663, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36206918

RESUMEN

Lithium (Li) is gaining attention due to rapid rise in modern industries but their ultimate fingerprints on plants are not well established. Herein, we executed a meta-analysis of the existing recent literature investigating the impact of Li sources and levels on plant species under different growth conditions to understand the existing state of knowledge. Toxic effects of Li exposure in plants varies as a function of medium and interestingly, more negative responses are reported in hydroponic media as compared to soil and foliar application. Additionally, toxic effects of Li vary with Li source materials and LiCl more negatively affected plant development parameters such as plant germination (n = 48) and root biomass (n = 57) and recorded highly uptake in plants (n = 78), while LiNO3 has more negative effects on shoot biomass. The Li at <50 mg L-1 concentrations significantly influenced the plant physiological indicators including plant germination and root biomass, while 50-500 mg L-1 Li concentration influence the biochemical parameters. The dose-response relationship (EC50) ranges regarding the exposure medium of Li sources in plant species were observed 24.6-196.7 ppm respectively. The uptake potential of Li is dose-dependent and their translocation/bioaccumulation remains unknown. Future work should include full life cycle studies of the crops to elucidate the bioaccumulation of Li in edible tissues and to investigate possible trophic transfer of Li.


Asunto(s)
Litio , Contaminantes del Suelo , Litio/análisis , Contaminación Ambiental/análisis , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Bioacumulación , Plantas
12.
Metabolites ; 13(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37110169

RESUMEN

We investigated biochar-induced drought tolerance in Leptocohloa fusca (Kallar grass) by exploring the plant defense system at physiological level. L. fusca plants were exposed to drought stress (100%, 70%, and 30% field capacity), and biochar (BC), as an organic soil amendment was applied in two concentrations (15 and 30 mg kg-1 soil) to induce drought tolerance. Our results demonstrated that drought restricted the growth of L. fusca by inhibiting shoot and root (fresh and dry) weight, total chlorophyll content and photosynthetic rate. Under drought stress, the uptake of essential nutrients was also limited due to lower water supply, which ultimately affected metabolites including amino and organic acids, and soluble sugars. In addition, drought stress induced oxidative stress, which is evidenced by the higher production of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide ion (O2-), hydroxyl ion (OH-), and malondialdehyde (MDA). The current study revealed that stress-induced oxidative injury is not a linear path, since the excessive production of lipid peroxidation led to the accumulation of methylglyoxal (MG), a member of reactive carbonyl species (RCS), which ultimately caused cell injury. As a consequence of oxidative-stress induction, the ascorbate-glutathione (AsA-GSH) pathway, followed by a series of reactions, was activated by the plants to reduce ROS-induced oxidative damage. Furthermore, biochar considerably improved plant growth and development by mediating metabolites and soil physio-chemical status.

13.
Sci Total Environ ; 894: 164861, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37343875

RESUMEN

The application of pristine nanomaterials (PNMs) for environment remediation remains challenging due to inherently high potential for aggregation, low stability, sub-optimum efficiency, and non-uniformity in size and toxicity. Conversely, modified nanomaterials (MNMs) approaches have shown significant potential to enhance the technical and economic efficiency of conventional nanoscale remediation strategies by decreasing aggregation of nanomaterials by imparting electrostatic, electrosteric or steric repulsion between particles. Furthermore, the solubility enhancing agents in MNMs have been shown to increase metal bioavailability and accelerate the breakdown of pollutants. As such, it is imperative to modify nanomaterials for unlocking their full potential and expanding their range of applications. However, there is no comprehensive review in the literature that evaluates the efficacy and environmental impact of MNMs against PNMs in the environment. This critical review identifies major barriers preventing the widescale application of nano-enabled remediation and discusses strategies to increase the stability and activity of nanomaterials at reaction sites. The higher reactivity and versatility of MNMs, along with novel properties and functionalities, enable effective removal of a range of chemical pollutants from complex environmental matrices. Additionally, MNMs show significant improvement in mobility, reactivity, and controlled and targeted release of active ingredients for in situ remediation. However, the uncertainties associated with the adverse effects of some modification agents of MNMs are not well-understood, and require further in-depth investigations. Overall, our findings show that MNMs are potentially more efficient, cost-effective, and resilient for remediation of soil and sediment, water, and air pollution than PNMs. The possible action mechanisms of MNMs have been demonstrated for different environmental compartments. Conclusively, this work provides a path forward for developing effective nano-enabled remediation technologies with MNMs, which are widely applicable to a range of environmental contamination scenarios.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Nanoestructuras , Nanoestructuras/toxicidad , Contaminación Ambiental , Metales
14.
Environ Sci Ecotechnol ; 15: 100252, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36891261

RESUMEN

Lithium's (Li) ubiquitous distribution in the environment is a rising concern due to its rapid proliferation in the modern electronic industry. Li enigmatic entry into the terrestrial food chain raises many questions and uncertainties that may pose a grave threat to living biota. We examined the leverage existing published articles regarding advances in global Li resources, interplay with plants, and possible involvement with living organisms, especially humans and animals. Globally, Li concentration (<10-300 mg kg-1) is detected in agricultural soil, and their pollutant levels vary with space and time. High mobility of Li results in higher accumulation in plants, but the clear mechanisms and specific functions remain unknown. Our assessment reveals the causal relationship between Li level and biota health. For example, lower Li intake (<0.6 mM in serum) leads to mental disorders, while higher intake (>1.5 mM in serum) induces thyroid, stomach, kidney, and reproductive system dysfunctions in humans and animals. However, there is a serious knowledge gap regarding Li regulatory standards in environmental compartments, and mechanistic approaches to unveil its consequences are needed. Furthermore, aggressive efforts are required to define optimum levels of Li for the normal functioning of animals, plants, and humans. This review is designed to revitalize the current status of Li research and identify the key knowledge gaps to fight back against the mountainous challenges of Li during the recent digital revolution. Additionally, we propose pathways to overcome Li problems and develop a strategy for effective, safe, and acceptable applications.

15.
Plant Physiol Biochem ; 204: 108132, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37918078

RESUMEN

Microplastics (MPx) and nanoplastics (NPx) are increasingly accumulating in terrestrial ecosystems, heightening concerns about their potential adverse effects on human health via the food chain. Techniques aimed at recovering the most challenging colloidal fractions of MPx and NPx, especially for analytical purposes, are limited. This systematic review emphasises the absence of a universal, efficient, and cost-effective analytical method as the primary hindrance to studying MPx and NPx in soil and plant samples. The study reveals that several methods, including density separation, organic matter removal, and filtration, are utilized to detect MPx or NPx in soil through vibrational spectroscopy and visual identification. Instruments such as Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) Spectroscopy, and fluorescence microscopy are employed to identify MPx and NPx in plant tissue. In extraction procedures, organic solvents and sonication are used to isolate NPx from plant tissues, while Pyrolysis GC-MS quantifies the plastics. SEM and TEM serve to observe and characterize NPx within plant tissues. Additionally, FTIR and fluorescence microscopy are utilized to identify polymers of MPx and NPx based on their spectral characteristics and fluorescence signals. The findings from this review clarify the identification and quantification methods for MPx and NPx in soil and plant systems and provide a comprehensive methodology for assessing MPx/NPx in the environment.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Microplásticos/análisis , Plásticos , Suelo/química , Ecosistema , Polímeros
16.
Environ Int ; 178: 107985, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37364304

RESUMEN

Steroid estrogens (SEs) accumulate in agro-food systems through wastewater treatment and dairy manure, but very little is known about their potential impact on plants and dietary risk to human health. We conducted a meta-analysis to address key questions including, how plants respond to SEs under different environmental conditions, what is the accumulation potential of SEs in distinct plant families, and associated daily dietary intake risks to humans. Based on 517 endpoints, we revealed that various crop species show a heterogeneous response to SEs types (n = 140), SEs concentrations (n = 141), and exposure medium (n = 166). A subsidy-stress response was observed in terms of SEs accumulation for plant growth. The bioaccumulation of SE in plants was shown to be greatest in sand, followed by soil, and hydroponic media. Plants exposed to SEs exhibit considerable changes in physiological and biochemical characteristics. Surprisingly, food crops such as carrot and potato were found as major source of SEs daily intake in food chain but their consequences remains largely unknown. Further field-oriented research is needed to unveil the threshold levels for SEs in soil-plant systems as it may pose a global threat to human health. The state of knowledge presented here may guide towards urgently needed future investigations in this field for reducing the risk in SEs in agro-food systems.


Asunto(s)
Estrógenos , Contaminantes del Suelo , Humanos , Estrógenos/toxicidad , Estrógenos/análisis , Productos Agrícolas , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
17.
Mol Immunol ; 148: 54-67, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671559

RESUMEN

Mastitis, an inflammation of the mammary gland, is a complex disease that affects the health of dairy cows worldwide. Sodium butyrate (SB) is a short-chain fatty acid that has recently been shown to have antioxidant, anti-inflammatory and anti-apoptotic potential in various cells types, although its role in bovine mammary epithelial cells (bMECs) has not been comprehensively reported. Therefore, the aim of this study was to assess the protective effect of sodium butyrate on Lipopolysaccharide (LPS)-induced mastitis model in vitro and to elucidate the possible underlying molecular mechanisms. The in vitro mastitis model was designed to investigate the regulatory effect of SB on LPS-induced inflammatory conditions in bMECs, with particular emphasis on oxidative stress, inflammatory response, apoptosis, and mitochondrial dysfunction. The results showed that SB co-treatment markedly prevented LPS-induced death of bMECs in a concentration-dependent manner. In addition, SB attenuated LPS-induced oxidative stress (OS) (Increased Intracellular ROS, MDA, and decreased SOD, GSH-Px and CAT activity), thereby reduced inflammation (increased expression of IL-6, IL-Iß, and TNF-α), and apoptosis (Increased the expression of caspases and Bax and decreased Bcl-2) via inhibiting NF-kB and caspase/bax signaling pathways. Furthermore, the protective effect of SB was also associated with the activation of endogenous antioxidant system (Nrf2, Keap1, NQO-1 and HO-1). Nrf2 silencing significantly abolished the protective effect of SB on bMECs. In conclusion, our findings suggest that SB has a significant protective effect on LPS-induced OS, inflammatory responses and apoptosis by activating Nrf2 and inhibiting NF-kB and ROS-mediated mitochondrial dysfunction. These results propose that SB may be an important regulator of OS and its subsequent inflammatory responses, and thus could be used as a therapeutic agent for bovine mastitis.


Asunto(s)
Lipopolisacáridos , Mastitis , Animales , Apoptosis , Ácido Butírico/metabolismo , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Caspasas/metabolismo , Bovinos , Células Epiteliales/metabolismo , Femenino , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Lipopolisacáridos/farmacología , Mastitis/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/metabolismo
18.
NanoImpact ; 25: 100388, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559894

RESUMEN

Iron (Fe) deficiency is a pervasive nutritional disorder, and producing vegetables enriched with Fe as a dietary source is imperative. Herein, Fe3O4, FeO(OH), α-Fe2O3, ß-Fe2O3, γ-Fe3O4, and nZVI nanoparticles (NPs) were applied in soil as fertilizer to enhance the Fe nutrition in cherry radish. The highest enhancement of Fe content (58%) was observed in Fe3O4 treatment at 100 mg kg-1, followed by FeO(OH) (49%), α-Fe2O3 (24%), nZVI (14%), ß-Fe2O3 (13%) and γ-Fe3O4 (4%). The daily intake of Fe was 97-104% and 77-91% with Fe3O4 and FeO(OH) at 100-200 mg kg-1, respectively. Moreover, the zinc, vitamin C and crude protein contents were also increased by 37, 48 and 67% under Fe3O4 treatment as compared to control. Fe3O4 at 100 mg kg-1 also increased the essential amino acids (phenylalanine, leucine and isoleucine) contents by 11-14%. These data suggest that Fe3O4 and FeO(OH) NPs could be effective nanofertilizers to enhance Fe nutrition in plants.


Asunto(s)
Nanopartículas , Raphanus , Fertilizantes , Hierro , Valor Nutritivo
19.
Curr Neuropharmacol ; 19(12): 2141-2151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33535957

RESUMEN

Peripheral nerve injury has a high incidence and often leads to severe losses of sensory and motor functions in the afflicted limb. Autologous nerve grafts are widely accepted as the gold standard for peripheral nerve repair, but the presence of inherent drawbacks dramatically reduces their usability. Numerous tissue engineering nerve grafts are developed as alternatives to autologous nerve grafts, and a variety of cells and neurotrophic factors are introduced into these grafts for improvement. However, they are still difficult to obtain satisfactory clinical results. Peripheral nerve regeneration following injury remains a significant challenge for researchers and clinicians. Exosomes are extracellular membranous nanovesicles that are secreted by most cells. As the key players of intercellular communication, exosomes play a fundamental role in the physiological and pathological processes of the nervous system. Accumulating evidence has suggested that exosomes can exert neurotherapeutic effects via mediating axonal regrowth, Schwann cell activation, vascular regeneration, and inflammatory regulation. Exosomes are emerging as a promising approach for treating peripheral nerve injury. Furthermore, they also provide possibilities for enhancing the repairing capacity of various nerve grafts. This review primarily highlights the regenerative effects of exosomes on peripheral nerve injury. The exosomes from distinct sources reported so far in the literature are summarized to understand their roles in the process of nerve repair. Moreover, the challenges that must be addressed in their clinical transformation are outlined as well. This review also provides further insight into the potential application of exosomes for peripheral nerve repair.


Asunto(s)
Exosomas , Traumatismos de los Nervios Periféricos , Axones , Humanos , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/terapia , Células de Schwann
20.
Int J Biol Macromol ; 167: 1452-1467, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33212106

RESUMEN

This investigation is vital contribution to the healthcare system utilizing techniques of nanobiotechnology. It interestingly applies chitosan capped CuO nanoparticles in the field of medicine and restorative dentistry. The CuO nanoparticles and CuO-Chitosan nanoparticles are prepared by co-precipitation, and their characterization is performed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX). The average crystallite size of these nanoparticles has been found to be in the dimensions of <40 nm and <35 nm, respectively. CuO-Chitosan nanoparticles show significant enhancement in in vitro antibacterial, antioxidant, cytotoxic, and antidiabetic activity as compared to CuO nanoparticles. In addition, the successful amalgamation of CuO nanoparticles and CuO-Chitosan nanoparticles into dentine bonding agents results in providing efficient remedy against secondary caries. CuO-Chitosan nanoparticles reinforced dental adhesive discs cause significant upsurge in reduction of Lactobacillus acidophillus and Streptococcus mutans. Also, the augmentation of mechanical properties, water sorption and solubility plus slow and sustained release profile and slight variation of shear bond strength is attained. Taken together, the chemically synthesized CuO nanoparticles and CuO-Chitosan nanoparticles have proven to be promising candidates having enormous potential to be utilized in drug delivery and nanotheranostics.


Asunto(s)
Antibacterianos/química , Antioxidantes/química , Quitosano/química , Cobre/química , Sistemas de Liberación de Medicamentos/métodos , Hipoglucemiantes/química , Nanopartículas del Metal/química , Nanomedicina/métodos , Animales , Artemia , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/fisiología , Biopelículas/efectos de los fármacos , Caries Dental/tratamiento farmacológico , Odontología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Lactobacillus acidophilus/efectos de los fármacos , Lactobacillus acidophilus/fisiología , Nanopartículas del Metal/análisis , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Solubilidad , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Streptococcus/efectos de los fármacos , Streptococcus/genética , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA