Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 4: 2821, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24281726

RESUMEN

The modulation of developmental biochemical pathways by mechanical cues is an emerging feature of animal development, but its evolutionary origins have not been explored. Here we show that a common mechanosensitive pathway involving ß-catenin specifies early mesodermal identity at gastrulation in zebrafish and Drosophila. Mechanical strains developed by zebrafish epiboly and Drosophila mesoderm invagination trigger the phosphorylation of ß-catenin-tyrosine-667. This leads to the release of ß-catenin into the cytoplasm and nucleus, where it triggers and maintains, respectively, the expression of zebrafish brachyury orthologue notail and of Drosophila Twist, both crucial transcription factors for early mesoderm identity. The role of the ß-catenin mechanosensitive pathway in mesoderm identity has been conserved over the large evolutionary distance separating zebrafish and Drosophila. This suggests mesoderm mechanical induction dating back to at least the last bilaterian common ancestor more than 570 million years ago, the period during which mesoderm is thought to have emerged.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Evolución Biológica , Proteínas de Drosophila/metabolismo , Mecanotransducción Celular , Mesodermo/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , beta Catenina/metabolismo , Animales , Secuencia Conservada/fisiología , Drosophila , Femenino , Proteínas Fetales , Masculino , Mecanotransducción Celular/fisiología , Transducción de Señal/fisiología , Proteínas de Dominio T Box/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Pez Cebra
2.
Methods Cell Biol ; 98: 295-321, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20816239

RESUMEN

Embryonic development is a coordination of multicellular biochemical patterning and morphogenetic movements. Last decades revealed the close control of myosin-II-dependent biomechanical morphogenesis by patterning gene expression, with constant progress in the understanding of the underlying molecular mechanisms. Reversed control of developmental gene expression and of myosin-II patterning by the mechanical strains developed by morphogenetic movements was recently revealed at Drosophila gastrulation, through mechanotransduction processes involving the Armadillo/beta-catenin and the downstream of Fog Rho pathways. Here, we present the theoretical (simulations integrating the accumulated knowledge in the genetics of early embryonic development and morphogenesis) and the experimental (genetic and biophysical control of morphogenetic movements) tools having allowed the uncoupling of pure genetic inputs from pure mechanical inputs in the regulation of gene expression and myosin-II patterning. Specifically, we describe the innovative magnetic tweezers tools we have set up to measure and apply physiological strains and forces in vivo, from the inside of the tissue, to modulate and mimic morphogenetic movements in living embryos. We discuss mechanical induction incidence in tumor development and perspective in evolution.


Asunto(s)
Comunicación Celular/fisiología , Desarrollo Embrionario/fisiología , Evolución Molecular , Redes Reguladoras de Genes/fisiología , Mecanotransducción Celular/fisiología , Neoplasias/patología , Animales , Comunicación Celular/genética , Procesos de Crecimiento Celular/genética , Procesos de Crecimiento Celular/fisiología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Desarrollo Embrionario/genética , Humanos , Mecanotransducción Celular/genética , Modelos Biológicos , Neoplasias/genética , Neoplasias/fisiopatología
3.
Sci Signal ; 2(66): ra16, 2009 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-19366994

RESUMEN

During Drosophila gastrulation, two waves of constriction occur in the apical ventral cells, leading to mesoderm invagination. The first constriction wave is a stochastic process mediated by the constriction of 40% of randomly positioned mesodermal cells and is controlled by the transcription factor Snail. The second constriction wave immediately follows and involves the other 60% of the mesodermal cells. The second wave is controlled by the transcription factor Twist and requires the secreted protein Fog. Complete mesoderm invagination requires redistribution of the motor protein Myosin II to the apical side of the constricting cells. We show that apical redistribution of Myosin II and mesoderm invagination, both of which are impaired in snail homozygous mutants that are defective in both constriction waves, are rescued by local mechanical deformation of the mesoderm with a micromanipulated needle. Mechanical deformation appears to promote Fog-dependent signaling by inhibiting Fog endocytosis. We propose that the mechanical tissue deformation that occurs during the Snail-dependent stochastic phase is necessary for the Fog-dependent signaling that mediates the second collective constriction wave.


Asunto(s)
Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Mesodermo/metabolismo , Miosina Tipo II/metabolismo , Transducción de Señal , Animales , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/embriología , Genotipo , Mesodermo/embriología , Modelos Biológicos , Mutación , Fenotipo , Factores de Transcripción de la Familia Snail , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA