Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Langmuir ; 39(44): 15785-15791, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37880817

RESUMEN

Developing a new master mold-based patterning technology that can be used to accurately, precisely, and uniformly create large-area micropatterns while controlling the micropatterns of curved structures is essential for promoting innovative developments in various application fields. This study develops a new top-down lithographic process that can effectively produce structural patterns with high curvatures by growing isolated microbubbles in the master pattern holes. The isolated air-pocket lithography (IAL) we developed is based on the controlled behavior of micrometer-sized air pockets trapped between the grooves of the master pattern and the curable polymer. We successfully fabricated a concave array polydimethylsiloxane (PDMS) film and a convex array polymer film. In addition, the IAL mechanism was proven by confirming the expansion process of micrometer-sized air pockets trapped between the deep groove of the silicon master pattern and the PDMS coating film by using optical microscopy images. We successfully obtained complex three-dimensional structural patterns containing both 3D hollow spherical concave and ring-shaped two-dimensional convex patterns. This simple, fast, and effective high-curvature patterning technique is expected to provide innovative solutions for future applications such as nanoelectronics, optical devices, displays, and photovoltaics.

2.
J Environ Manage ; 340: 117895, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121008

RESUMEN

In efforts to minimize environmental pollution and carbon-based gas emissions, photocatalytic hydrogen production and sensing applications at ambient temperature are important. This research reports on the development of new 0D/1D materials based on TiO2 nanoparticles grown onto CdS hetersturctured nanorods via two-stage facile synthesis. The titanate nanoparticles when loaded onto CdS surfaces at an optimized concentration (20 mM), exhibited superior photocatalytic hydrogen production (21.4 mmol/h/gcat). The optimized nanohybrid was recycled for 6 cycles up to 4 h, indicating its excellent stabity for a prolonged period. Also, the photoelectrochemical water oxidation in alkaline medium was investigated to offer the optimized CRT-2 composite with 1.91 mA/cm2@0.8 V vs. RHE (0 V vs. Ag/AgCl) that was used for effective room-temperature NO2 gas detection exhibiting a higher response (69.16%) to NO2 (100 ppm) at room temperature at the lowest detection limit of ∼118 ppb than the pristine counterparts. Further, NO2 gas sensing performance of CRT-2 sensor was increased using UV light (365 nm) activation energy. Under the UV light, the sensor exhibited a remarkable gas sensing response quick response/recovery times (68/74), excellent long-term cycling stability, and significant selectivity to NO2 gas. Due to high porosity and surface area values of CdS (5.3), TiO2 (35.5), and CRT-2 (71.5 m2/g), excellent photocatalytic H2 production and gas sensing of CRT-2 is ascribed to morphology, synergistic effect, improved charge generation, and separation. Overall, 1D/0D CdS@TiO2 is proved to be an efficient material for hydrogen production and gas detection.


Asunto(s)
Ciclismo , Dióxido de Nitrógeno , Carbono , Hidrógeno
3.
Nanotechnology ; 33(6)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34724650

RESUMEN

Over the past few years, metal nanowire networks have attracted attention as an alternative to transparent conducting oxide materials such as indium tin oxide for transparent conducting electrode applications. Recently, electrodeposition of metal on nanoscale template is widely used for formation of metal network. In the present work, junctionless Cu nanowire networks were simply fabricated on a substrate by forming a nanostructured Ru with 80 nm width as a seed layer, followed by direct electroless deposition of Cu. By controlling the density of Ru nanowires or the electroless deposition time, we readily achieve desired transmittance and sheet resistance values ranging from ∼1 kΩ sq-1at 99% to 9 Ω sq-1at 89%. After being transferred to flexible substrates, the nanowire networks exhibited no obvious increase in resistance during 8000 cycles of a bending test to a radius of 2.5 mm. The durability was verified by evaluation of its heating performance. The maximum temperature was greater than 180 °C at 3 V and remained constant after three repeated cycles and for 10 min. Transmission electron microscopy and x-ray diffraction studies revealed that the adhesion between the electrolessly deposited Cu and the seed Ru nanowires strongly influenced the durability of the core-shell structured nanowire-based heaters.

4.
Anal Chem ; 91(21): 13665-13674, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31525946

RESUMEN

In this study, we investigated the translocation characteristics of flagellar filaments (Salmonella typhimurium) and flagellin subunits through silicon nitride nanopores in tandem with optical microscopy analysis. Even though untagged flagella are dark to the optical method, the label-free nature of the nanopore sensor allows it to characterize both tagged (Cy3) and pristine forms of flagella (including real-time developments). Flagella were depolymerized to flagellin subunits at ∼65 °C (most commonly reported temperature), ∼70 °C, ∼75 °C, and ∼80 °C to investigate the effect of temperature (Tdepol) on depolymerization. The change in conductance (ΔG) profiles corresponding to Tdepol ∼65 °C and ∼70 °C were bracketed within the flagellin monomer profile whereas those of ∼75 °C and ∼80 °C extended beyond this profile, suggesting a change to the native protein state. The molecular radius calculated from the excluded electrolyte volume of flagellin through nanopore-based ΔG characteristics for each Tdepol of ∼65 °C, ∼70 °C, ∼75 °C, and ∼80 °C yielded ∼4.2 ± 0.2 nm, ∼4.3 ± 0.3 nm, ∼4.1 ± 0.2 nm, and ∼4.7 ± 0.5 nm, respectively. This, along with ΔG (plateaued values) and translocation time profiles, points to the possibility of flagellin misfolding at ∼80 °C.


Asunto(s)
Flagelos/metabolismo , Flagelina/metabolismo , Microscopía/métodos , Nanoporos
5.
Electrophoresis ; 40(5): 776-783, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30151981

RESUMEN

Enveloped viruses fuse with cells to transfer their genetic materials and infect the host cell. Fusion requires deformation of both viral and cellular membranes. Since the rigidity of viral membrane is a key factor in their infectivity, studying the rigidity of viral particles is of great significance in understating viral infection. In this paper, a nanopore is used as a single molecule sensor to characterize the deformation of pseudo-type human immunodeficiency virus type 1 at sub-micron scale. Non-infective immature viruses were found to be more rigid than infective mature viruses. In addition, the effects of cholesterol and membrane proteins on the mechanical properties of mature viruses were investigated by chemically modifying the membranes. Furthermore, the deformability of single virus particles was analyzed through a recapturing technique, where the same virus was analyzed twice. The findings demonstrate the ability of nanopore resistive pulse sensing to characterize the deformation of a single virus as opposed to average ensemble measurements.


Asunto(s)
VIH-1/química , Nanoporos , Virión/química , Fenómenos Biomecánicos , Colesterol/química , Técnicas Electroquímicas , Lípidos de la Membrana/química
6.
Langmuir ; 33(33): 8260-8266, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28756666

RESUMEN

Here, we describe a next-generation lithographic technique for fabricating ultrahigh-resolution nanostructures. This technique makes use of the secondary sputtering phenomenon of plasma ion etching and of nanoscale electroplating to finely control the resolution of the fabricated structures from ten nanometers to hundreds of nanometers from a single microsized master pattern. In contrast to previously described techniques that incorporate a recently developed secondary sputtering lithography (SSL) patterning approach, which could only yield 10 nm-resolution structures, in the current technique, we used an improved SSL approach to produce various-sized, high-resolution structures. Additionally, this improved SSL approach was used to fabricate size-controllable 3D patterns on various types of substrates, in particular, a silicon wafer, transparent glass, and flexible polycarbonate (PC) film. Thus, this method can serve as a new-concept patterning method for the efficient mass production of ultrahigh-resolution nanostructures.

7.
Sensors (Basel) ; 17(5)2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28489055

RESUMEN

The use of atomically thin graphene for molecular sensing has attracted tremendous attention over the years and, in some instances, could displace the use of classical thin films. For nanopore sensing, graphene must be suspended over an aperture so that a single pore can be formed in the free-standing region. Nanopores are typically drilled using an electron beam (e-beam) which is tightly focused until a desired pore size is obtained. E-beam sculpting of graphene however is not just dependent on the ability to displace atoms but also the ability to hinder the migration of ad-atoms on the surface of graphene. Using relatively lower e-beam fluxes from a thermionic electron source, the C-atom knockout rate seems to be comparable to the rate of carbon ad-atom attraction and accumulation at the e-beam/graphene interface (i.e., Rknockout ≈ Raccumulation). Working at this unique regime has allowed the study of carbon ad-atom migration as well as the influence of various substrate materials on e-beam sculpting of graphene. We also show that this information was pivotal to fabricating functional graphene nanopores for studying DNA with increased spatial resolution which is attributed to atomically thin membranes.


Asunto(s)
Nanoporos , ADN , Electrones , Grafito
8.
Nanotechnology ; 27(49): 495301, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27827346

RESUMEN

This paper describes a general approach for transferring clean single-layer graphene onto silicon nitride nanopore devices and the use of the electron beam of a transmission electron microscope (TEM) to drill size-controlled nanopores in freely suspended graphene. Besides nanopore drilling, we also used the TEM to heal and completely close the unwanted secondary holes formed by electron beam damage during the drilling process. We demonstrate electron beam assisted shrinking of irregularly shaped 40-60 nm pores down to 2 nm, exhibiting an exquisite control of graphene nanopore diameter. Our fabrication workflow also rendered graphene nanopores hydrophilic, allowing easy wetting and use of the pores for studying protein translocation and protein-protein interaction with a high signal to noise ratio.


Asunto(s)
Nanoporos , ADN , Grafito , Interacciones Hidrofóbicas e Hidrofílicas , Humectabilidad
9.
Nanotechnology ; 27(47): 475302, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27779118

RESUMEN

In this study, hybrid-structured metal mesh (HMM) films as potential flexible transparent electrodes, composed of aligned micro-sized metal fibers integrated into random network of metal nanofibers, were fabricated by the combination of electrospinning and metal deposition. These naturally fiber-bridged HMMs, with a gold layer thickness of 85 nm, exhibited a high transmittance of around 90% and a sheet resistance of approximately 10 Ω sq-1, as well as favorable mechanical stability under bending stress. These results demonstrate that the approach employed herein is a simple, highly efficient, and facile process for fabricating, uniform, interconnected fiber networks with potential for producing high-performance flexible transparent electrodes.

10.
Nanotechnology ; 27(36): 365705, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27482811

RESUMEN

The direct transfer of graphene using polydimethylsiloxane (PDMS) stamping has advantages such as a 'pick-and-place' capability and no chemical residue problems. However, it is not easy to apply direct PDMS stamping to graphene grown via chemical vapor deposition on rough, grainy metal surfaces due to poor contact between the PDMS and graphene. In this study, graphene consisting of a mixture of monolayers and multiple layers grown on a rough Ni surface was directly transferred without the use of an adhesive layer. Liquid PDMS was cured on graphene to effect a conformal contact with the graphene. A fast release of graphene from substrate was achieved by carrying out wet-etching-assisted mechanical peeling. We also carried out a thermal post-curing of PDMS to control the level of adhesion between PDMS and graphene and hence facilitate a damage-free release of the graphene. Characterization of the transferred graphene by micro-Raman spectroscopy, SEM/EDS and optical microscopy showed neither cracks nor contamination from the transfer. This technique allows a fast and simple transfer of graphene, even for multilayer graphene grown on a rough surface.

11.
Nano Lett ; 15(6): 4102-7, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26010266

RESUMEN

Confining photons in the smallest possible volume has long been an objective of the nanophotonics community. In this Letter, we propose and demonstrate a three-dimensional (3D) gap-plasmon antenna that enables extreme photon squeezing in a 3D fashion with a modal volume of 1.3 × 10(-7) λ(3) (∼4 × 10 × 10 nm(3)) and an intensity enhancement of 400 000. A three-dimensionally tapered 4 nm air-gap is formed at the center of a complementary nanodiabolo structure by ion-milling 100 nm-thick gold film along all three dimensions using proximal milling techniques. From a 4 nm-gap antenna, a nonlinear second-harmonic signal more than 27 000-times stronger than that from a 100 nm-gap antenna is observed. In addition, scanning cathodoluminescence images confirm unambiguous photon confinement in a resolution-limited area 20 × 20 nm(2) on top of the nano gap.

12.
ACS Appl Mater Interfaces ; 16(20): 26004-26014, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728621

RESUMEN

Two-dimensional (2D) transition metal carbides, known as MXenes, have captured much attention for their excellent electrical conductivity and electrochemical capability. However, the susceptibility of MXenes to oxidation, particularly Ti3C2Tx transforming into titanium dioxide upon exposure to ambient air, hinders their utilization for extended operational life cycles. This work introduces a simple and straightforward method for producing ultrathin MXene electrode films tailored for energy storage applications, employing centrifugal-gravity force. Our approach significantly suppresses the oxidation phenomenon that arises in MXene materials and also effectively prevents the recrystallization of potentially residual LiF during the film formation. Additionally, the utilization of this MXene electrode in an all-solid-state microsupercapacitor (MSC) with an interdigitated pattern demonstrates an exceptionally improved and stable electrochemical performance. This includes a high volumetric capacitance of approximately 467 F cm-3, an energy density of around 65 mWh cm-3, and impressive long-term cycle stability, retaining about 94% capacity after 10 000 cycles. Moreover, a downsized MSC device exhibits remarkable mechanical durability, retaining over 98% capacity even when folded and sustaining stability over extended periods. Therefore, we believe that this study provides valuable insights for advancing highly integrated energy storage devices, ensuring exceptional electrochemical efficiency and prolonged functionality in diverse environments, whether ambient or humid.

13.
Biosens Bioelectron ; 260: 116419, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38830292

RESUMEN

Microbatteries are emerging as a sustainable, miniaturized power source, crucial for implantable biomedical devices. Their significance lies in offering high energy density, longevity, and rechargeability, facilitating uninterrupted health monitoring and treatment within the body. The review delves into the development of microbatteries, emphasizing their miniaturization and biocompatibility, crucial for long-term, safe in-vivo use. It examines cutting-edge manufacturing techniques like physical and chemical vapor deposition, and atomic layer deposition, essential for the precision manufacture of the microbatteries. The paper contrasts primary and secondary batteries, highlighting the advantages of zinc-ion and magnesium-ion batteries for enhanced stability and reduced reactivity. It also explores biodegradable batteries, potentially obviating the need for surgical extraction post-use. The integration of microbatteries into diagnostic and therapeutic devices is also discussed, illustrating how they enhance the efficacy and sustainability of implantable biosensors and bioelectronics.


Asunto(s)
Técnicas Biosensibles , Suministros de Energía Eléctrica , Prótesis e Implantes , Técnicas Biosensibles/instrumentación , Humanos , Diseño de Equipo , Miniaturización , Animales
14.
Small ; 9(3): 369-74, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23047618

RESUMEN

An elastomeric poly(dimethylsiloxane) (PDMS) block engraved with periodically arrayed nanopillars serves as a transferable light-trapping stamp for encapsulated organic thin-film solar cells. Diffracted light rays from the stamp interfere with one another and self-focus onto the active layer of the solar cell, generating enhanced absorption, as indicated in the current density-voltage measurements.

15.
Nanotechnology ; 24(13): 135704, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23478423

RESUMEN

We present an improvement in the electrical properties of silica nanotubes by coating metal nanoparticles on their surfaces. The silica nanotubes are formed from bacterial flagella bio-templates having a tubular structure. Successive depositions of metal nanoparticles on the silica nanotubes are performed through easily functionalized silica surfaces. The results show uniform metal nanoparticle sizes and a high surface area coverage. By incorporating gold, palladium and iron oxide nanoparticles, the metallized silica nanotubes gain electrical properties with the potential to create unique nanoelectronic materials. In this study, the metallized silica nanotubes with network structures are aligned and their electrical behaviors are investigated in both dry and wet conditions. The metallized silica nanotubes are found to be electrically conductive along the network structures. The current-voltage characteristics show remarkably improved electrical conductivities depending on the type of metal nanoparticle loading and nanotube network concentration.


Asunto(s)
Materiales Biomiméticos/síntesis química , Flagelos/química , Flagelos/ultraestructura , Impresión Molecular/métodos , Nanotubos/química , Nanotubos/ultraestructura , Dióxido de Silicio/química , Cristalización/métodos , Conductividad Eléctrica , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
16.
Nano Lett ; 12(5): 2217-21, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22519417

RESUMEN

B- and N-doped carbon nanotubes (CNTs) with controlled workfunctions were successfully employed as charge trap materials for solution processable, mechanically flexible, multilevel switching resistive memory. B- and N-doping systematically controlled the charge trap level and dispersibility of CNTs in polystyrene matrix. Consequently, doped CNT device demonstrated greatly enhanced nonvolatile memory performance (ON-OFF ratio >10(2), endurance cycle >10(2), retention time >10(5)) compared to undoped CNT device. More significantly, the device employing both B- and N-doped CNTs with different charge trap levels exhibited multilevel resistive switching with a discrete and stable intermediate state. Charge trapping materials with different energy levels offer a novel design scheme for solution processable multilevel memory.

17.
ACS Nano ; 17(11): 10353-10364, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37017522

RESUMEN

Flexible see-through displays are considered to be the next generation smart display, providing improved information flow, safety, situational awareness, and overall user experience in smart windows, automotive displays, glass-form biomedical displays, and augmented reality systems. 2D titanium carbides (MXenes) are promising material as electrodes of the transparent and flexible displays due to their high transparency, metallic conductivity, and flexibility. However, current MXene-based devices have insufficient air stability and lack engineering schemes to develop matrix-addressable display forms with sufficient pixels to display information. Here, we develop an ultraflexible and environmentally stable MXene-based organic light-emitting diode (OLED) display by combining high performance MXene electrodes, flexible OLEDs, and ultrathin and functional encapsulation systems. The MXene material was synthesized and used to fabricate a highly reliable MXene-based OLED that can stably operate in air condition for over 2000 h, endure repetitive bending deformation of 1.5 mm radius, and maintain environmental stability for 6 h when exposed to wet surroundings. The RGB MXene-based OLEDs were fabricated, (1691 cd m-2 at 40.4 mA cm-2 for red, 1377 cd m-2 at 4.26 mA cm-2 for green, and 1475 cd m-2 at 18.6 mA cm-2 for blue) and a matrix-addressable transparent OLED display was demonstrated that could display letters and shapes.

18.
Nanotechnology ; 23(11): 115401, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22383446

RESUMEN

A photovoltaic device was successfully grown solely based on the single ZnO p-n homojunction nanowire. The ZnO nanowire p-n diode consists of an as-grown n-type segment and an in situ arsenic-doped p-type segment. This p-n homojunction acts as a good photovoltaic cell, producing a photocurrent almost 45 times larger than the dark current under reverse-biased conditions. Our results demonstrate that the present ZnO p-n homojunction nanowire can be used as a self-powered ultraviolet photodetector as well as a photovoltaic cell, which can also be used as an ultralow electrical power source for nanoscale electronic, optoelectronic and medical devices.

19.
J Nanosci Nanotechnol ; 12(4): 3593-6, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22849175

RESUMEN

An in-situ electrical conductivity measurement of thin films of tin oxide nanoclusters for nano-devices was performed during metal cluster deposition and subsequent oxidation. From the current observation, the percolation threshold and the oxidation process are suggested. During baking at 200 degrees C, tin nanoclusters were transformed into low-conductivity stannous oxide and then into high-conductivity stannic oxide. From electron micrographs, it is suggested that the baking procedure is responsible for changing the oxide state and/or the crystallinity of the individual nanoclusters rather than changing the morphology of the film.

20.
Nat Commun ; 13(1): 3467, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725850

RESUMEN

The need for miniaturized and high-performance devices has attracted enormous attention to the development of quantum silicon nanowires. However, the preparation of abundant quantities of silicon nanowires with the effective quantum-confined dimension remains challenging. Here, we prepare highly dense and vertically aligned sub-5 nm silicon nanowires with length/diameter aspect ratios greater than 10,000 by developing a catalyst-free chemical vapor etching process. We observe an unusual lattice reduction of up to 20% within ultra-narrow silicon nanowires and good oxidation stability in air compared to conventional silicon. Moreover, the material exhibits a direct optical bandgap of 4.16 eV and quasi-particle bandgap of 4.75 eV with the large exciton binding energy of 0.59 eV, indicating the significant phonon and electronic confinement. The results may provide an opportunity to investigate the chemistry and physics of highly confined silicon quantum nanostructures and may explore their potential uses in nanoelectronics, optoelectronics, and energy systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA