Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555596

RESUMEN

The core-shell structure of poly(St-co-MAA) nanoparticles containing ß-diketonate Eu3+ complexes were synthesized by a step-wise process. The ß-diketonate Eu3+ complexes of Eu (TFTB)2(MAA)P(Oct)3 [europium (III); 4,4,4-Trifluoro-1-(2-thienyl)-1,3-butanedione = TFTB; trioctylphosphine = (P(Oct)3); methacrylic acid = MAA] were incorporated to poly(St-co-MAA). The poly(St-co-MAA) has highly monodispersed with a size of 300 nm, and surface charges of the poly(St-co-MAA) are near to neutral. The narrow particle size distribution was due to the constant ionic strength of the polymerization medium. The activated carboxylic acid of poly(St-co-MAA) further chelated with europium complex and polymerize between acrylic groups of poly(St-co-MAA) and Eu(TFTB)2(MAA)P(Oct)3. The Em spectra of europium complexes consist of multiple bands of Em at 585, 597, 612 and 650 nm, which are assigned to 5D0→7FJ (J = 0-3) transitions of Eu3+, respectively. The maximum Em peak is at 621 nm, which indicates a strong red Em characteristic associated with the electric dipole 5D0→7F2 transition of Eu3+ complexes. The cell-specific fluorescence of Eu(TFTB)2(MAA)P(Oct)3@poly(St-co-MAA) indicated endocytosis of Eu(TFTB)2(MAA)P(Oct)3@poly(St-co-MAA). There are fewer early apoptotic, late apoptotic and necrotic cells in each sample compared with live cells, regardless of the culture period. Eu(TFTB)2(MAA)P(Oct)3@poly(St-co-MAA) synthesized in this work can be excited in the full UV range with a maximum Em at 619 nm. Moreover, these particles can substitute red luminescent organic dyes for intracellular trafficking and cellular imaging agents.


Asunto(s)
Europio , Nanopartículas , Europio/química , Luminiscencia , Fluorescencia , Colorantes
2.
Nanomaterials (Basel) ; 10(7)2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635432

RESUMEN

Highly fluorescent magnetic nanoparticles (Eu(TTA)3(P(Oct)3)3@mSiO2@SPION) [europium (III) chloride hexahydrate = Eu; 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione = TTA; trioctylphosphine = (P(Oct)3); mesoporous silica = mSiO2; superparamagnetic iron oxide nanoparticle = SPION] were developed as a dual-functional imaging agent. The hierarchical structure was composed of a magnetic core and mesoporous silica shell was constructed using a cationic surfactant template after coating with phosphatidylcholine of oleic acid coated SPION. Afterward, the surface and cavities of mSiO2@SPION were modified with 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) as a silane coupling agent to introduce methacrylate groups. Eu(TTA)3(P(Oct)3)3 molecules are penetrated, located and bonded covalently inside of the cavities/mesopores of mSiO2, it shows extremely stable anti-photobleaching properties. The emission spectra of Eu(TTA)3(P(Oct)3)3@mSiO2@SPION indicated typical hypersensitivity transition 5D0→7F2 at 621 nm. The concentration of Eu(TTA)3(P(Oct)3)3@mSiO2@SPION was varied between 10 and 500 µL/mL to evaluate the cytotoxicity with NCI-H460 (H460) cells using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. In addition, the presence of a strong red-emitting Eu(TTA)3(P(Oct)3)3@mSiO2@SPION in the cytoplasm was observed by fluorescence microscopy. Those results that it can be a potential candidate for dual-functional contrast agent and PL nanomaterials for fabricating the diagnostic kits to amplify the low signal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA