RESUMEN
In order to increase the chemical stability of polybenzimidazole (PBI) membrane against the highly oxidizing environment of a vanadium redox flow battery (VRFB), PBI/Nafion hybrid membrane was developed by spray coating a Nafion ionomer onto one surface of the PBI membrane. The acid-base interaction between the sulfonic acid of the Nafion and the benzimidazole of the PBI created a stable interfacial adhesion between the Nafion layer and the PBI layer. The hybrid membrane showed an area resistance of 0.269 Ω cm2 and a very low vanadium permeability of 1.95 × 10-9 cm2 min-1. The Nafion layer protected the PBI from chemical degradation under accelerated oxidizing conditions of 1 M VO2 +/5 M H2SO4, and this was subsequently examined in spectroscopic analysis. In the VRFB single cell performance test, the cell with the hybrid membrane showed better energy efficiency than the Nafion cell with 92.66% at 40 mA cm-2 and 78.1% at 100 mA cm-2 with no delamination observed between the Nafion layer and the PBI layer after the test was completed.
RESUMEN
Monocarboxylate transporters (MCTs) play a major role in up-regulation of glycolysis and adaptation to acidosis. However, the role of MCTs in gastric cancer (GC) is not fully understood. We investigated the potential utilization of a new cancer therapy for GC. We characterized the expression patterns of the MCT isoforms 1, 2, and 4 and investigated the role of MCT in GC through in vitro and in vivo tests using siRNA targeting MCTs. In GC cell lines, MCT1, 2, and 4 were up-regulated with different expression levels; MCT1 and MCT4 were more widely expressed in GC cell lines compared with MCT2. Inhibition of MCTs by siRNA or AR-C155858 reduced cell viability and lactate uptake in GC cell lines. The effect of inhibition of MCTs on tumor growth was also confirmed in xenograft models. Furthermore, MCT inhibition in GC cells increased the sensitivity of cells to radiotherapy or chemotherapy. Compared with normal gastric tissue, no significant alterations of expression levels in tumors were identified for MCT1 and MCT2, whereas a significant increase in MCT4 expression was observed. Most importantly, MCT4 was highly overexpressed in malignant cells of acsites and its silencing resulted in reduced tumor cell proliferation and lactate uptake in malignant ascites. Our study suggests that MCT4 is a clinically relevant target in GC with peritoneal carcinomatosis.