Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt A): 2097-2107, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29601978

RESUMEN

Prolactin regulatory element-binding (PREB) protein is a transcription factor that regulates prolactin (PRL) gene expression. PRL, also known as luteotropic hormone or luteotropin, is well known for its role in producing milk. However, the role of PREB, in terms of hepatic glucose metabolism, is not well elucidated. Here, we observed expression of Preb in the mouse liver, in connection with glucose homeostasis. Morevoer, Preb was downregulated in db/db, ob/ob and high-fat diet-induced obese (DIO) mice, concurrent with upregulation of the liver genes glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase-1 (Pck). Administration of adenovirus-Preb (Ad-Preb) to db/db, ob/ob, and DIO mice diminished glucose, insulin, and pyruvate tolerance, which analogously, were impaired in normal (C57BL/6) mice knocked down for Preb, via infection with Ad-shPreb (anti-Preb RNA), indicating Preb to be a negative regulator of liver gluconeogenic genes. We further demonstrate that Preb negatively influences gluconeogenic gene expression, by directly binding to their promoters at a prolactin core-binding element (PCBE). A better understanding of Preb gene expression, during the pathogenesis of hepatic insulin resistance, could ultimately provide new avenues for therapies for metabolic syndrome, obesity, and type-2 diabetes mellitus, disorders whose worldwide incidences are increasing drastically.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Gluconeogénesis , Glucosa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hígado/metabolismo , Factores de Transcripción/metabolismo , Animales , Glucemia , Proteínas de Unión al ADN/genética , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ayuno , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Hepatocitos/metabolismo , Humanos , Insulina/metabolismo , Hígado/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/sangre , Obesidad/etiología , Obesidad/metabolismo , Cultivo Primario de Células , Prolactina/metabolismo , Regiones Promotoras Genéticas , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba
2.
Ann Rheum Dis ; 76(1): 65-71, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26905864

RESUMEN

OBJECTIVES: To evaluate equivalence in efficacy for rheumatoid arthritis (RA) and compare the safety of the biosimilar HD203 with innovator etanercept (ETN) plus methotrexate (MTX) (ClinicalTrials.gov NCT01270997). METHODS: Patients with active RA received 25 mg HD203 or ETN subcutaneously twice-weekly with MTX for 48 weeks in a phase III, multicentre, randomised, double-blind, parallel-group design. The primary end point was the proportion of patients achieving the American College of Rheumatology 20% response (ACR20) at week 24 for per-protocol study completer set (PPS). Secondary end points included ACR response criteria, ACRn, European League against Rheumatism (EULAR) response, change in Disease Activity Score 28 (DAS28), patient-reported outcomes, safety and immunogenicity. RESULTS: Of the 294 randomised patients (HD203, n=147; ETN, n=147), 233 comprised the 24-week PPS (n=115 and 118, respectively). ACR20 at week 24 was achieved by 83.48% and 81.36% of PPS patients, respectively, demonstrating equivalent efficacy within predefined margins of ±20% (treatment difference 2.12%, 95% CI -7.65% to 11.89%). Outcomes for secondary end points were consistent with the primary efficacy findings. Groups were comparable for overall incidences of treatment-emergent (all-causality) adverse events (AEs) (HD203 113 (76.9%) vs ETN 114 (78.1%) (p=0.804)), adverse drug reactions, serious AEs and discontinuations due to AEs. Few patients (HD203, n=8; ETN, n=3) tested positive for anti-drug antibodies. CONCLUSION: The study met the primary objective of demonstrating equivalent efficacy of HD203 and ETN. HD203 was well tolerated, with safety comparable with ETN in this population of patients with RA. TRIAL REGISTRATION NUMBER: NCT01270997; Results.


Asunto(s)
Antirreumáticos/farmacocinética , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Biosimilares Farmacéuticos/farmacocinética , Biosimilares Farmacéuticos/uso terapéutico , Etanercept/farmacocinética , Etanercept/uso terapéutico , Adulto , Anciano , Anticuerpos/sangre , Antirreumáticos/efectos adversos , Antirreumáticos/inmunología , Método Doble Ciego , Quimioterapia Combinada , Etanercept/efectos adversos , Etanercept/inmunología , Femenino , Humanos , Masculino , Metotrexato/uso terapéutico , Persona de Mediana Edad , Equivalencia Terapéutica , Resultado del Tratamiento
3.
Biochem Biophys Res Commun ; 478(3): 1060-6, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27524233

RESUMEN

Elongation of very long chain fatty acids protein 6 (ELOVL6), a rate-limiting enzyme for the elongation of saturated and monounsaturated fatty acids with 12, 14, and 16 carbons, plays a key role in energy metabolism and insulin sensitivity. Hepatic Elovl6 expression is upregulated in the fasting-refeeding response and in leptin-deficient ob/ob mice. Mouse Elovl6 has been shown to be a direct target of sterol regulatory element binding protein-1 (SREBP-1) in response to insulin. In the present study, we demonstrated that mouse and human Elovl6 expression is under the direct transcriptional control of carbohydrate response element binding protein (ChREBP), a mediator of glucose-induced gene expression. Serial deletion and site-directed mutagenesis studies revealed functional carbohydrate response elements (ChoREs) in the mouse and human Elovl6 promoters and gel shift assays and chromatin immunoprecipitation assays confirmed the binding of ChREBP to the Elovl6-ChoRE sites. In addition, the ectopic co-expression of ChREBP and SREBP-1c in HepG2 cells synergistically stimulated Elovl6 promoter activity and this synergistic activation was abolished by mutating the Elovl6 promoter ChoREs. Taken together, these results suggest that the synergistic action of ChREBP and SREBP-1c is necessary for the maximal induction of Elovl6 expression in the liver.


Asunto(s)
Acetiltransferasas/genética , Regulación de la Expresión Génica , Hígado/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , Acetiltransferasas/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Elongasas de Ácidos Grasos , Conducta Alimentaria , Células Hep G2 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Unión Proteica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elementos de Respuesta/genética
4.
Biochem J ; 467(3): 453-60, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25695641

RESUMEN

Insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2), one of the most abundant circulating IGFBPs, is known to attenuate the biological action of IGF-1. Although the effect of IGFBP-2 in preventing metabolic disorders is well known, its regulatory mechanism remains unclear. In the present study, we demonstrated the transcriptional regulation of the Igfbp-2 gene by peroxisome-proliferator-activated receptor (PPAR) α in the liver. During fasting, both Igfbp-2 and PPARα expression levels were increased. Wy14643, a selective PPARα agonist, significantly induced Igfbp-2 gene expression in primary cultured hepatocytes. However, Igfbp-2 gene expression in Pparα null mice was not affected by fasting or Wy14643. In addition, through transient transfection and chromatin immunoprecipitation assay in fasted livers, we determined that PPARα bound to the putative PPAR-responsive element between -511 bp and -499 bp on the Igfbp-2 gene promoter, indicating that the Igfbp-2 gene transcription is activated directly by PPARα. To explore the role of PPARα in IGF-1 signalling, we treated primary cultured hepatocytes with Wy14643 and observed a decrease in the number of IGF-1 receptors (IGF-1Rs) and in Akt phosphorylation. No inhibition was observed in the hepatocytes isolated from Pparα null mice. These results suggest that PPARα controls IGF-1 signalling through the up-regulation of hepatic Igfbp-2 transcription during fasting and Wy14643 treatment.


Asunto(s)
Ayuno/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR alfa/deficiencia , PPAR alfa/genética , PPAR gamma/agonistas , Proliferadores de Peroxisomas/farmacología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rosiglitazona , Transducción de Señal , Tiazolidinedionas/farmacología , Regulación hacia Arriba/efectos de los fármacos
5.
J Biol Chem ; 286(2): 1157-64, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21081500

RESUMEN

Glucose-6-phosphatase (G6Pase) is a key enzyme that is responsible for the production of glucose in the liver during fasting or in type 2 diabetes mellitus (T2DM). During fasting or in T2DM, peroxisome proliferator-activated receptor α (PPARα) is activated, which may contribute to increased hepatic glucose output. However, the mechanism by which PPARα up-regulates hepatic G6Pase gene expression in these states is not well understood. We evaluated the mechanism by which PPARα up-regulates hepatic G6Pase gene expression in fasting and T2DM states. In PPARα-null mice, both hepatic G6Pase and phosphoenolpyruvate carboxykinase levels were not increased in the fasting state. Moreover, treatment of primary cultured hepatocytes with Wy14,643 or fenofibrate increased the G6Pase mRNA level. In addition, we have localized and characterized a PPAR-responsive element in the promoter region of the G6Pase gene. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα binding to the putative PPAR-responsive element of the G6Pase promoter was increased in fasted wild-type mice and db/db mice. These results indicate that PPARα is responsible for glucose production through the up-regulation of hepatic G6Pase gene expression during fasting or T2DM animal models.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Regulación Enzimológica de la Expresión Génica , Glucosa-6-Fosfatasa/genética , PPAR alfa/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Modelos Animales de Enfermedad , Ingestión de Alimentos/fisiología , Ayuno/fisiología , Gluconeogénesis/fisiología , Células Hep G2 , Humanos , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , PPAR alfa/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/metabolismo , Regulación hacia Arriba/fisiología
6.
Biochem Biophys Res Commun ; 403(3-4): 329-34, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21078299

RESUMEN

During a state of fasting, the blood glucose level is maintained by hepatic gluconeogenesis. SIRT1 is an important metabolic regulator during nutrient deprivation and the liver-specific knockdown of SIRT1 resulted in decreased glucose production. We hypothesize that SIRT1 is responsible for the upregulation of insulin-suppressed gluconeogenic genes through the deacetylation of FOXO1. Treatment of primary cultured hepatocytes with resveratrol increased insulin-repressed PEPCK and G6Pase mRNA levels, which depend on SIRT1 activity. We found that the resveratrol treatment resulted in a decrease in the phosphorylation of Akt and FOXO1, which are independent of SIRT1 action. Fluorescence microscopy revealed that resveratrol caused the nuclear localization of FOXO1. In the nucleus, FOXO1 is deacetylated by SIRT1, which might make it more accessible to the IRE of the PEPCK and G6Pase promoter, causing an increase in their gene expression. Our results indicate that resveratrol upregulates the expression of gluconeogenic genes by attenuating insulin signaling and by deacetylating FOXO1, which are SIRT1-independent in the cytosol and SIRT1-dependent in the nucleus, respectively.


Asunto(s)
Antioxidantes/farmacología , Factores de Transcripción Forkhead/metabolismo , Expresión Génica/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Estilbenos/farmacología , Animales , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Gluconeogénesis/genética , Humanos , Hígado/metabolismo , Fosforilación , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Resveratrol , Sirtuina 1/genética , Sirtuina 1/metabolismo , Regulación hacia Arriba
7.
Biochem J ; 417(1): 313-22, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18774944

RESUMEN

KLF5 (Krüppel-like factor 5) is a zinc-finger transcription factor that plays a critical role in the regulation of cellular signalling involved in cell proliferation, differentiation and oncogenesis. In the present study, we showed that KLF5 acts as a key regulator controlling the expression of FASN (fatty acid synthase) through an interaction with SREBP-1 (sterol-regulatory-element-binding protein-1) in the androgen-dependent LNCaP prostate cancer cell line. The mRNA level of KLF5 increased when cells were treated with a synthetic androgen, R1881. Furthermore, KLF5 bound to SREBP-1 and enhanced the SREBP-1-mediated increase in FASN promoter activity. The results also demonstrated that the expression of KLF5 in LNCaP prostate cancer cells enhanced FASN expression, whereas silencing of KLF5 by small interfering RNA down-regulated FASN expression. The proximal promoter region and the first intron of the FASN gene contain multiple CACCC elements that mediate the transcriptional regulation of the gene by KLF5. However, other lipogenic and cholesterogenic genes, such as those encoding acetyl-CoA carboxylase, ATP-citrate lyase, the LDL (low-density lipoprotein) receptor, HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) synthase and HMG-CoA reductase are irresponsive to KLF5 expression, owing to the absence of CACCC elements in their promoter regions. Taken together, these results suggest that the FASN gene is activated by the synergistic action of KLF5 and SREBP-1, which was induced by androgen in androgen-dependent prostate cancer cells.


Asunto(s)
Andrógenos/farmacología , Ácido Graso Sintasas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Western Blotting , Línea Celular Tumoral , Ácido Graso Sintasas/genética , Expresión Génica/efectos de los fármacos , Humanos , Inmunoprecipitación , Intrones/genética , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica/efectos de los fármacos , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
8.
Sensors (Basel) ; 10(5): 5031-53, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22399922

RESUMEN

Pancreatic ß-cells and the liver play a key role in glucose homeostasis. After a meal or in a state of hyperglycemia, glucose is transported into the ß-cells or hepatocytes where it is metabolized. In the ß-cells, glucose is metabolized to increase the ATP:ADP ratio, resulting in the secretion of insulin stored in the vesicle. In the hepatocytes, glucose is metabolized to CO(2), fatty acids or stored as glycogen. In these cells, solute carrier family 2 (SLC2A2) and glucokinase play a key role in sensing and uptaking glucose. Dysfunction of these proteins results in the hyperglycemia which is one of the characteristics of type 2 diabetes mellitus (T2DM). Thus, studies on the molecular mechanisms of their transcriptional regulations are important in understanding pathogenesis and combating T2DM. In this paper, we will review a recent update on the progress of gene regulation of glucose sensors in the liver and ß-cells.


Asunto(s)
Regulación de la Expresión Génica , Glucoquinasa/genética , Transportador de Glucosa de Tipo 2/genética , Glucosa/metabolismo , Hígado/metabolismo , Transcripción Genética , Animales , Glucoquinasa/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Hígado/enzimología
9.
Biochim Biophys Acta Gene Regul Mech ; 1862(6): 643-656, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30959128

RESUMEN

Gluconeogenesis is essential for blood glucose homeostasis during fasting and is regulated by various enzymes, which are encoded by gluconeogenic genes. Those genes are controlled by various transcription factors. Zinc finger and BTB domain-containing 7c (Zbtb7c, also called Kr-pok) is a BTB-POZ family transcription factor with proto-oncogenic activity. Previous findings have indicated that Zbtb7c is involved in the regulation of fatty acid biosynthesis, suggesting an involvement also in primary metabolism. We found here that fasting induced Zbtb7c expression in the mouse liver and in primary liver hepatocytes. We also observed that Zbtb7c-knockout mice have decreased blood glucose levels, so we investigated whether Zbtb7c plays a role in gluconeogenesis. Indeed, differential gene expression analysis of Zbtb7c-knockout versus wild type mouse livers showed downregulated transcription of gluconeogenic genes encoding the glucose 6-phosphatase catalytic subunit (G6pc) and phosphoenolpyruvate carboxykinase 1 (Pck1), while Zbtb7c expression upregulated these two genes, under fasting conditions. Mechanistically, we found that when complexed with histone deacetylase 3 (Hdac3), Zbtb7c binds insulin response elements (IREs) within the G6pc and Pck1 promoters. Moreover, complexed Zbtb7c deacetylated forkhead box O1 (Foxo1), thereby increasing Foxo1 binding to the G6pc and Pck1 IREs, resulting in their transcriptional activation. These results demonstrate Zbtb7c to be a crucial metabolic regulator of blood glucose homeostasis, during mammalian fasting.


Asunto(s)
Ayuno , Regulación de la Expresión Génica , Gluconeogénesis/fisiología , Glucosa-6-Fosfatasa/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Proteínas/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc/fisiología , Animales , Glucemia , Proteínas de Unión al ADN/metabolismo , Ácidos Grasos/biosíntesis , Proteína Forkhead Box O1/metabolismo , Gluconeogénesis/genética , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Células HEK293 , Células Hep G2 , Hepatocitos/metabolismo , Histona Desacetilasas/metabolismo , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Mutagénesis Sitio-Dirigida , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Regiones Promotoras Genéticas , Proteínas/genética , Transcriptoma , Dedos de Zinc/genética
10.
Exp Mol Med ; 39(4): 544-55, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17934343

RESUMEN

We have investigated the function and mechanisms of the CARM1-SNF5 complex in T3-dependent transcriptional activation. Using specific small interfering RNAs (siRNA) to knock down coactivators in HeLa alpha2 cells, we found that coactivator associated arginine methyltransferase 1 (CARM1) and SWI/SNF complex component 5 (SNF5) are important for T3-dependent transcriptional activation. The CARM1- SWI/SNF chromatin remodeling complex serves as a mechanism for the rapid reversal of H3-K9 methylation. Importantly, siRNA treatment against CARM1 and/or SNF5 increased the recruitment of HMTase G9a to the type 1 deiodinase (D1) promoter even with T3. Knocking-down either CARM1 or SNF5 also inhibited the down-regulation of histone macroH2A, which is correlated with transcriptional activation. Finally, knocking down CARM1 and SNF5 by siRNA impaired the association of these coactivators to the D1 promoter, suggesting functional importance of CARM1- SNF5 complex in T3-dependent transcriptional activation.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína-Arginina N-Metiltransferasas/fisiología , Receptores de Hormona Tiroidea/fisiología , Factores de Transcripción/fisiología , Activación Transcripcional , Células HeLa , Histona Metiltransferasas , Histonas/metabolismo , Humanos , Yoduro Peroxidasa/metabolismo , Metilación , Regiones Promotoras Genéticas , Proteína Metiltransferasas , Proteína SMARCB1
11.
Biochem J ; 399(1): 131-9, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16787385

RESUMEN

Expression of the GLUT4 (glucose transporter type 4 isoform) gene in adipocytes is subject to hormonal or metabolic control. In the present study, we have characterized an adipose tissue transcription factor that is influenced by fasting/refeeding regimens and insulin. Northern blotting showed that refeeding increased GLUT4 mRNA levels for 24 h in adipose tissue. Consistent with an increased GLUT4 gene expression, the mRNA levels of SREBP (sterol-regulatory-element-binding protein)-1c in adipose tissue were also increased by refeeding. In streptozotocin-induced diabetic rats, insulin treatment increased the mRNA levels of GLUT4 in adipose tissue. Serial deletion, luciferase reporter assays and electrophoretic mobility-shift assay studies indicated that the putative sterol response element is located in the region between bases -109 and -100 of the human GLUT4 promoter. Transduction of the SREBP-1c dominant negative form to differentiated 3T3-L1 adipocytes caused a reduction in the mRNA levels of GLUT4, suggesting that SREBP-1c mediates the transcription of GLUT4. In vivo chromatin immunoprecipitation revealed that refeeding increased the binding of SREBP-1 to the putative sterol-response element in the GLUT4. Furthermore, treating streptozotocin-induced diabetic rats with insulin restored SREBP-1 binding. In addition, we have identified an Sp1 binding site adjacent to the functional sterol-response element in the GLUT4 promoter. The Sp1 site appears to play an additive role in SREBP-1c mediated GLUT4 gene upregulation. These results suggest that upregulation of GLUT4 gene transcription might be directly mediated by SREBP-1c in adipose tissue.


Asunto(s)
Adipocitos/metabolismo , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 4/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Células 3T3-L1 , Adipocitos/citología , Animales , Diferenciación Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Ingestión de Alimentos , Ayuno , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Insulina/farmacología , Masculino , Ratones , Regiones Promotoras Genéticas , Ratas , Elementos de Respuesta/genética , Factor de Transcripción Sp1/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Regulación hacia Arriba/efectos de los fármacos
12.
Sci Rep ; 7: 45300, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28338058

RESUMEN

The incidence of prostate cancer (PC) is growing rapidly throughout the world, in probable association with the adoption of western style diets. Thus, understanding the molecular pathways triggering the development of PC is crucial for both its prevention and treatment. Here, we investigated the role of the metabolism-associated protein, CREB3L4, in the proliferation of PC cells. CREB3L4 was upregulated by the synthetic androgen, R1881, in LNCaP PC cells (an androgen-dependent cell line). Knockdown of CREB3L4 resulted in decreased androgen-dependent PC cell growth. LNCaP cells transfected with siCREB3L4 underwent G2/M arrest, with upregulation of the proteins cyclin B1, phospho-CDK1, p21Waf1/Cip1, and INCA1, and downregulation of cyclin D1. Moreover, depletion of CREB3L4 resulted in significantly decreased expression of a subset of androgen-receptor (AR) target genes, including PSA, FKBP5, HPGD, KLK2, and KLK4. We also demonstrated that CREB3L4 directly interacts with the AR, and increases the binding of AR to androgen response elements (AREs). We also identified a role for the unfolded protein response (and its surrogate, IRE1α), in activating CREB3L4. Cumulatively, we postulate that CREB3L4 expression is mediated by an AR-IRE1α axis, but is also directly regulated by AR-to-ARE binding. Thus, our study demonstrates that CREB3L4 plays a key role in PC cell proliferation, which is promoted by both AR and IRE1α.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proliferación Celular , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Regulación hacia Abajo/efectos de los fármacos , Endorribonucleasas/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Masculino , Metribolona/farmacología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
13.
Diabetes ; 54(6): 1684-91, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15919789

RESUMEN

GLUT2 is mainly expressed in the liver, beta-cells of the pancreas, and the basolateral membrane of kidney proximal tubules and plays an important role in glucose homeostasis in living organisms. The transcription of the GLUT2 gene is known to be upregulated in the liver during postprandial hyperglycemic states or in type 2 diabetes. However, a molecular mechanism by which glucose activates GLUT2 gene expression is not known. In this study, we report evidence that sterol response element-binding protein (SREBP)-1c plays a key role in glucose-stimulated GLUT2 gene expression. The GLUT2 promoter reporter is activated by SREBP-1c, and the activation is inhibited by a dominant-negative form of SREBP-1c (SREBP-1c DN). Adenoviral expression of SREBP-1c DN suppressed glucose-stimulated GLUT2 mRNA level in primary hepatocytes. An electrophoretic mobility shift assay and mutational analysis of the GLUT2 promoter revealed that SREBP-1c binds to the -84/-76 region of the GLUT2 promoter. Chromatin immunoprecipitation revealed that the binding of SREBP-1c to the -84/-76 region was increased by glucose concentration in a dose-dependent manner. These results indicate that SREBP-1c mediates glucose-stimulated GLUT2 gene expression in hepatocytes.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Unión al ADN/metabolismo , Glucosa/fisiología , Hepatocitos/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 2 , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas de Transporte de Monosacáridos/genética , Mutación , Regiones Promotoras Genéticas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Transcripción Genética , Regulación hacia Arriba
14.
Diabetes ; 53 Suppl 1: S60-5, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14749267

RESUMEN

Type 2 diabetes develops in the context of both insulin resistance and beta-cell failure. Thiazolidinediones are a class of antidiabetic agents that are known to improve insulin sensitivity in various animal models of diabetes. The improved insulin sensitivity may be achieved either by systemic insulin sensitization or by direct action of peroxisome proliferator-activated receptor (PPAR)-gamma on the transcription of genes involved in glucose disposal. Evidence supporting the direct action of PPAR-gamma on glucose metabolism is observed in the genes involved in insulin-stimulated glucose disposal. We already showed that GLUT2 and beta-glucokinase were directly activated by PPAR-gamma. Recently, we have identified and characterized the functional PPAR response element in the GLUT2 and liver type glucokinase (LGK) promoter of the liver. It is well known that adipose tissue plays a crucial role in antidiabetic action of PPAR-gamma. In addition, PPAR-gamma can directly affect liver and pancreatic beta-cells to improve glucose homeostasis.


Asunto(s)
Glucosa/fisiología , Insulina/metabolismo , Islotes Pancreáticos/fisiología , Hígado/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología , Animales , Humanos , Secreción de Insulina , Ratones , Modelos Biológicos , Ratas
15.
Diabetes ; 53 Suppl 1: S66-70, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14749268

RESUMEN

Thiazolidinediones (TZDs), synthetic ligands of peroxisome proliferator-activated receptor (PPAR)-gamma, are known to decrease hepatic glucose production and increase glycogen synthesis in diabetic animals. Recently it was reported that glucokinase (GK) expression was increased by TZDs in the liver of diabetic ZDF rats. However, the mechanism whereby TZDs increase GK expression is not yet studied. We have assumed that liver type glucokinase (LGK) induction by TZDs could be achieved by direct transcriptional activation. Thus, we have dissected the LGK promoter to explore the presence of a PPAR response element (PPRE) in the promoter. From this study, we were able to localize a PPRE in the -116/-104 region of the rat LGK gene. The PPAR-gamma/retinoid X receptor-alpha heterodimer was bound to the element and activated the LGK promoter. The LGK promoter lacking the PPRE or having mutations in the PPRE could not be activated by PPAR-gamma. Furthermore, troglitazone increased endogenous GK mRNA in primary hepatocytes. These results indicate that PPAR-gamma can directly activate GK expression in liver and may contribute to improving glucose homeostasis in type 2 diabetes.


Asunto(s)
Glucoquinasa/metabolismo , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología , Animales , Línea Celular , Cromanos/farmacología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dimerización , Activación Enzimática , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucoquinasa/genética , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Biosíntesis de Proteínas , Ratas , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Proteínas Recombinantes/metabolismo , Receptor alfa de Ácido Retinoico , Tiazolidinedionas/farmacología , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo , Transcripción Genética , Transfección , Troglitazona
16.
Diabetes ; 51(3): 676-85, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11872666

RESUMEN

Thiazolidinediones, synthetic ligands of peroxisomal proliferator-activated receptor-gamma (PPAR-gamma), improve peripheral insulin sensitivity and glucose-stimulated insulin secretion in pancreatic beta-cells. To explore the role of PPAR-gamma in glucose sensing of beta-cells, we have dissected the beta-cell-specific glucokinase (betaGK) promoter, which constitutes glucose-sensing apparatus in pancreatic beta-cells, and identified a peroxisomal proliferator response element (PPRE) in the promoter. The betaGK-PPRE is located in the region between +47 and +68 bp. PPAR-gamma/retinoid X receptor-alpha heterodimer binds to the element and activates the betaGK promoter. The betaGK promoter lacking or having mutations in PPRE cannot be activated by PPAR-gamma. PPAR-gamma activates the betaGK promoter in beta-cells as well as non-beta-cells. Furthermore, troglitazone increases endogenous GK expression and its enzyme activity in beta-cell lines. These results indicate that PPAR-gamma can regulate GK expression in beta-cells. Taking these results together with our previous work, we conclude that PPAR-gamma regulates gene expression of glucose-sensing apparatus and thereby improves glucose-sensing ability of beta-cells, contributing to the restoration of beta-cell function in type 2 diabetic subjects by troglitazone.


Asunto(s)
Glucoquinasa/genética , Islotes Pancreáticos/enzimología , Receptores Citoplasmáticos y Nucleares/fisiología , Tiazolidinedionas , Factores de Transcripción/fisiología , Animales , Línea Celular , Cromanos/farmacología , ADN/metabolismo , Dimerización , Activación Enzimática/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Hipoglucemiantes/farmacología , Ratones , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas , Ratas , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Ácido Retinoico/metabolismo , Elementos de Respuesta , Receptores X Retinoide , Tiazoles/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología , Activación Transcripcional , Transfección , Troglitazona
17.
J Nucl Med ; 46(10): 1753-9, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16204727

RESUMEN

UNLABELLED: (18)F-FDG uptake in malignant tumors largely depends on the presence of facilitated glucose transporters, especially type 1 (Glut 1) and a rate-limiting glycolytic enzyme, hexokinase (HK) type II. Low expression of Glut 1 was reported in hepatocellular carcinoma (HCC), whereas high expression was found in cholangiocarcinoma. Immunohistochemistry and proteome analysis were performed to obtain a detailed evaluation of the mechanisms involved in glucose uptake and use in these tumors. METHODS: Tumor tissues obtained from both HCC (n = 7) and mass-forming cholangiocarcinoma patients (n = 7) who showed increased (18)F-FDG uptake on PET were used. Immunohistochemistry for Glut 1 and HK I-III was performed in all tumor tissues. To identify proteins that regulate carbohydrate metabolism, a proteome analysis with matrix-assisted laser desorption ionization-time of flight and enzymatic digestion in-gel were performed using 8 available tumor samples and 3 normal liver tissues. Of the 8 tumor samples, 4 were HCCs; one was an intermediate phenotype HCC, and 3 were cholangiocarcinomas. The spot intensity of the proteins was calculated using proteome data; the tissues then were divided into 2 groups on the basis of the protein expression pattern, because the protein expression pattern of the intermediate-phenotype HCC was close to that of the cholangiocarcinomas. Group A included the HCCs and group B included the intermediate-phenotype HCC as well as the cholangiocarcinomas. RESULTS: Immunoreactivity for Glut 1 was positive in all cholangiocarcinomas, but was negative in all HCCs except the one intermediate phenotype. However, HK II was positive in HCCs but was negative in 6 of the 7 cholangiocarcinomas. A total of 331 protein spots with a P value of <0.05 were identified by proteome analysis. Thirteen of these proteins that regulate carbohydrate metabolism were selected. The pentose phosphate pathway was increased in both groups, but more significantly in group B. Gluconeogenesis enzymes were decreased in both groups, but the tricarboxylic acid cycle-regulating enzyme expression was variable. CONCLUSION: HCCs have different glucose-regulating mechanisms from those of cholangiocarcinomas, even though both tumors showed increased (18)F-FDG uptake on PET scans. Further studies are required with regard to energy metabolism and (18)F-FDG uptake patterns in association with various oncogenic alterations regulating multiple steps of the glycolytic pathways.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/metabolismo , Colangiocarcinoma/diagnóstico por imagen , Colangiocarcinoma/metabolismo , Fluorodesoxiglucosa F18/farmacocinética , Glucosa/farmacocinética , Neoplasias de los Conductos Biliares/diagnóstico por imagen , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/diagnóstico por imagen , Conductos Biliares Intrahepáticos/metabolismo , Glucólisis , Humanos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Células Tumorales Cultivadas
18.
Exp Mol Med ; 37(2): 101-10, 2005 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-15886523

RESUMEN

In the present study, we show that the expression of type 2 glucose transporter isoform (GLUT2) could be regulated by PPAR-gamma in the liver. Rosiglitazone, PPAR-gamma agonist, activated the GLUT2 mRNA level in the primary cultured hepatocytes and Alexander cells, when these cells were transfected with PPAR-gamma/RXR-alpha. We have localized the peroxisome proliferator response element in the mouse GLUT2 promoter by serial deletion studies and site-directed mutagenesis. Chromatin immunoprecipitation assay using ob/ob mice also showed that PPAR-gamma rather than PPAR-alpha binds to the -197/-184 region of GLUT2 promoter. Taken together, liver GLUT2 may be a direct target of PPAR-gamma ligand contributing to glucose transport into liver in a condition when PAPR-gamma expression is increased as in type 2 diabetes or in severe obesity.


Asunto(s)
Hepatocitos/metabolismo , Proteínas de Transporte de Monosacáridos/biosíntesis , PPAR gamma/metabolismo , Regiones Promotoras Genéticas , Elementos de Respuesta , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica , Genes Reporteros , Transportador de Glucosa de Tipo 2 , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Proteínas de Transporte de Monosacáridos/genética , Mutagénesis Sitio-Dirigida , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/agonistas , PPAR gamma/genética , Isoformas de Proteínas/biosíntesis , Rosiglitazona , Tiazolidinedionas/farmacología
19.
Sci Rep ; 5: 17395, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26620281

RESUMEN

Glucokinase (GK), mainly expressed in the liver and pancreatic ß-cells, is critical for maintaining glucose homeostasis. GK expression and kinase activity, respectively, are both modulated at the transcriptional and post-translational levels. Post-translationally, GK is regulated by binding the glucokinase regulatory protein (GKRP), resulting in GK retention in the nucleus and its inability to participate in cytosolic glycolysis. Although hepatic GKRP is known to be regulated by allosteric mechanisms, the precise details of modulation of GKRP activity, by post-translational modification, are not well known. Here, we demonstrate that GKRP is acetylated at Lys5 by the acetyltransferase p300. Acetylated GKRP is resistant to degradation by the ubiquitin-dependent proteasome pathway, suggesting that acetylation increases GKRP stability and binding to GK, further inhibiting GK nuclear export. Deacetylation of GKRP is effected by the NAD(+)-dependent, class III histone deacetylase SIRT2, which is inhibited by nicotinamide. Moreover, the livers of db/db obese, diabetic mice also show elevated GKRP acetylation, suggesting a broader, critical role in regulating blood glucose. Given that acetylated GKRP may affiliate with type-2 diabetes mellitus (T2DM), understanding the mechanism of GKRP acetylation in the liver could reveal novel targets within the GK-GKRP pathway, for treating T2DM and other metabolic pathologies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucoquinasa/metabolismo , Glucosa/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Portadoras/genética , Diabetes Mellitus Tipo 2/genética , Glucoquinasa/genética , Glucosa/genética , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Obesos , Sirtuina 2/genética , Sirtuina 2/metabolismo
20.
Protein Cell ; 6(11): 804-13, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26334401

RESUMEN

Post-translational modifications (PTMs) of transcription factors play a crucial role in regulating metabolic homeostasis. These modifications include phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. Recent studies have shed light on the importance of lysine acetylation at nonhistone proteins including transcription factors. Acetylation of transcription factors affects subcellular distribution, DNA affinity, stability, transcriptional activity, and current investigations are aiming to further expand our understanding of the role of lysine acetylation of transcription factors. In this review, we summarize recent studies that provide new insights into the role of protein lysine-acetylation in the transcriptional regulation of metabolic homeostasis.


Asunto(s)
Factores de Transcripción/metabolismo , Acetilación , Animales , Diabetes Mellitus Tipo 2/metabolismo , Homeostasis/genética , Homeostasis/fisiología , Humanos , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA