RESUMEN
Anogeissus latifolia, commonly known as Axlewood, Indian Gum Tree, or Gum Ghatti, belongs to the Combretaceae family and is native to India, Nepal, Myanmar, and Sri Lanka. It thrives in most tropical and subtropical regions of India. Different parts of the plant contain various proteins, carbohydrates, sugars (arabinose, galactose, mannose, xylose, rhamnose, and glucuronic acid), minerals (magnesium and calcium salts of ghattic acid), and a wide range of phytochemicals such as alkaloids, flavonoids, phenols, terpenoids, sterols, saponins, tannins, coumarins, quinine, and ellagic acid. Studies have indicated the potential of Anogeissus latifolia in managing various health conditions, including antimicrobial, anti-inflammatory, anti-diabetic, anti-parasitic, antioxidant, hepatoprotective, wound healing, and hypolipidemic effects. However, like many medicinal plants, Anogeissus latifolia demonstrates a dose-dependent toxicity profile, particularly when administered intraperitoneally. Research efforts have been directed towards elucidating its safety profile, and findings suggest that it can be considered safe when administered within prescribed dosages. This paper aims to provide a comprehensive review encompassing the ethnobotanical significance, morphological characteristics, phytochemistry, pharmacological actions, and toxicological aspects of Anogeissus latifolia. Additionally, it explores future research perspectives in the field of Anogeissus latifolia pharmacology and therapeutics.
RESUMEN
Cardiometabolic disorders (CMD) is a constellation of metabolic predisposing factors for atherosclerosis such as insulin resistance (IR) or diabetes mellitus (DM), systemic hypertension, central obesity, and dyslipidemia. Cardiometabolic diseases (CMDs) continue to be the leading cause of mortality in both developed and developing nations, accounting for over 32% of all fatalities globally each year. Furthermore, dyslipidemia, angina, arrhythmia, heart failure, myocardial infarction (MI), and diabetes mellitus are the major causes of death, accounting for an estimated 19 million deaths in 2012. CVDs will kill more than 23 million individuals each year by 2030. Nonetheless, new drug development (NDD) in CMDs has been increasingly difficult in recent decades due to increased costs and a lower success rate. Drug repositioning in CMDs looks promising in this scenario for launching current medicines for new therapeutic indications. Repositioning is an ancient method that dates back to the 1960s and is mostly based on coincidental findings during medication trials. One significant advantage of repositioning is that the drug's safety profile is well known, lowering the odds of failure owing to undesirable toxic effects. Furthermore, repositioning takes less time and money than NDD. Given these facts, pharmaceutical corporations are becoming more interested in medication repositioning. In this follow-up, we discussed the notion of repositioning and provided some examples of repositioned medications in cardiometabolic disorders.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Dislipidemias , Humanos , Reposicionamiento de Medicamentos , Obesidad , Enfermedades Cardiovasculares/tratamiento farmacológicoRESUMEN
An acquired loss of cognition in several cognitive domains that is severe enough to interfere with social or professional functioning is called dementia. As well as a moderately in-depth mental status examination by a clinician to identify impairments in memory, language, attention, visuospatial cognition, such as spatial orientation, executive function, and mood, the diagnosis of dementia requires a history evaluating for cognitive decline and impairment in daily activities, with confirmation from a close friend or family member. The start and organization of the cognitive assessment can be helped by short screening tests for cognitive impairment. Clinical presentations show that neurodegenerative diseases are often incurable because patients permanently lose some types of neurons. It has been determined through an assessment that, at best, our understanding of the underlying processes is still rudimentary, which presents exciting new targets for further study as well as the development of diagnostics and drugs. A growing body of research suggests that they also advance our knowledge of the processes that are probably crucial for maintaining the health and functionality of the brain. We concentrate on a number of the animal models of memory problems that have been mentioned in this review article because dementia has numerous etiologies. Serious neurological impairment and neuronal death are the main features of neurodegenerative illnesses, which are also extremely crippling ailments. The most prevalent neurodegenerative disorders are followed by those primary nucleation pathways responsible for cognitive impairment and dementia.
Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Demencia , Humanos , Demencia/diagnóstico , Demencia/complicaciones , Trastornos del Conocimiento/etiología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/complicaciones , Función Ejecutiva , CogniciónRESUMEN
Lower level of testosterone in men is related to major risks of cardiovascular diseases. This risk may increase due to the opening of mitochondrial permeability transition pore (mPTP). The mPTP is also regulated by ischemic preconditioning (IPC) and a membrane protein known as caveolin. The cardioprotective effect of IPC is the most effective methodologies used in testosterone deficiency. Daidzein (DDZ) a caveolin inhibitor shows cardioprotective action. The experiment has been designed to evaluate the pretreated DDZ effect in IPC-mediated cardioprotective action in orchidectomy (OCZ)-challenged rat heart. The experiment was designed on male Wistar rats with/without OCZ. The level of testosterone is decreased by OCZ which reduces general body growth. Isolated heart from normal and OCZ rat was tied up on Langendorff's perfused apparatus and followed by ischemic reperfusion (IR) and IPC cycle. To investigate the cardioprotective effect of DDZ in heart with testosterone deficiency, a total of nine groups, each consisting of six rats (n = 6) were as follows: Sham, IR, IPC, IPC + OCZ, IPC + DDZ, IPC + OCZ + DDZ, IPC + sodium nitrite, IPC + OCZ + sodium nitrite, IPC + OCZ + DDZ + sodium nitrite. Hemodynamic parameters, cellular injury (infarct size, LDH, CKMB and cardiac troponin-T), oxidative stress, mitochondrial function, integrity and immunoblot analysis were assessed for each group. The experimental data showed that DDZ potentiated IPC-mediated increase in the heart rate, left ventricular diastolic pressure, coronary flow; + dp/dtmax, and - dp/dtmax. The pretreated DDZ decreases the action of LDH and CKMB, myocyte size, cardiac collagen content, infarct size and ventricular fibrillation and attenuation in oxidative stress and mitochondrial dysfunction in OCZ-challenged rat heart in all sets of experiments. Sodium nitrite, a producer of nitric oxide (NO), enhanced potentiating effects of DDZ on IPC-mediated cardioprotection in OCZ-challenged rats. These observations show that the downregulation of caveolin through impaired opening of mPTP during reperfusion and caveolin might be a potential adjuvant to IPC against cardiac injury in OCZ-challenged rats.
Asunto(s)
Caveolinas/metabolismo , Precondicionamiento Isquémico , Miocardio/metabolismo , Orquiectomía , Animales , Masculino , Miocardio/patología , Ratas , Ratas WistarRESUMEN
BACKGROUND: Empagliflozin is a sodium glucose co-transporter-2 (SGLT2) inhibitor that has gained significant attention in the treatment of type 2 diabetes mellitus. Understanding its chemistry, pharmacology, and toxicology is crucial for the safe and effective use of this medication. OBJECTIVE: This review aims to provide a comprehensive overview of the chemistry, pharmacology, and toxicology of empagliflozin, synthesizing the available literature to present a concise summary of its properties and implications for clinical practice. METHODS: A systematic search of relevant databases was conducted to identify studies and articles related to the chemistry, pharmacology, and toxicology of empagliflozin. Data from preclinical and clinical studies, as well as post-marketing surveillance reports, were reviewed to provide a comprehensive understanding of the topic. RESULTS: Empagliflozin is a selective SGLT2 inhibitor that works by constraining glucose reabsorption in the kidneys, causing increased urinary glucose elimination. Its unique mechanism of action provides glycemic control, weight reduction, and blood pressure reduction. The drug's chemistry is characterized by its chemical structure, solubility, and stability. Pharmacologically, empagliflozin exhibits favorable pharmacokinetic properties with rapid absorption, extensive protein binding, and renal elimination. Clinical studies have demonstrated its efficacy in improving glycemic control, reducing cardiovascular risks, and preserving renal function. However, adverse effects, for instance, urinary tract infections, genital infections, and diabetic ketoacidosis have been reported. Toxicological studies indicate low potential for organ toxicity, mutagenicity, or carcinogenicity. CONCLUSION: Empagliflozin is a promising SGLT2 inhibitor that offers an innovative approach to the treatment of type 2 diabetes mellitus. Its unique action mechanism and favorable pharmacokinetic profile contribute to its efficacy in improving glycemic control and reducing cardiovascular risks. While the drug's safety profile is generally favorable, clinicians should be aware of potential adverse effects and monitor patients closely. More study is required to determine the longterm safety and explore potential benefits in other patient populations. Overall, empagliflozin represents a valuable addition to the armamentarium of antidiabetic medications, offering significant benefits to patients suffering from type 2 diabetes mellitus. This study covers all aspects of empagliflozin, including its history, chemistry, pharmacology, and various clinical studies, case reports, and case series.
Asunto(s)
Compuestos de Bencidrilo , Diabetes Mellitus Tipo 2 , Glucósidos , Hipoglucemiantes , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Compuestos de Bencidrilo/uso terapéutico , Compuestos de Bencidrilo/farmacocinética , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/química , Humanos , Glucósidos/uso terapéutico , Glucósidos/farmacología , Glucósidos/farmacocinética , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacocinética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/química , Animales , Glucemia/efectos de los fármacos , Transportador 2 de Sodio-GlucosaRESUMEN
Bioflavonoids, are a diverse group of phytonutrients that are widely distributed in fruits, vegetables, grains, teas, and certain medicinal herbs. They are characterized by their antioxidant properties and play essential roles in plant biology, such as providing color to fruits and flowers, protecting plants from environmental stresses. Daidzein, a bioflavonoid classified under natural products, is sourced from plants like soybeans and legumes. It exists in forms such as glycosides and aglycones, with equol and trihydroxy isoflavone being key metabolites formed by gut bacteria. Known for its wide-ranging therapeutic potential, daidzein has shown effects on cardiovascular health, cancer, diabetes, skin conditions, osteoporosis, and neurodegenerative disorders. Its mechanisms include interaction with estrogen receptors, antioxidative and anti-inflammatory properties, and modulation of apoptosis and cell cycles. Recent advances in formulation technologies aimed at enhancing daidzein's bioavailability and efficacy are critically evaluated, including nanoparticle-based delivery systems and encapsulation strategies. Researchers have developed advanced formulations like nanoparticles and liposomes to enhance daidzein's solubility, stability, bioavailability, and targeted delivery. Considered a promising nutraceutical, daidzein warrants further exploration into its molecular actions and safety profile to fully realize its clinical potential. This review offers a succinct overview encompassing therapeutic benefits, chemical characteristics, historical uses, toxicology insights, recent advancements in delivery systems, and future directions for daidzein research.
RESUMEN
Glipizide is an oral glucose-lowering medication that is beneficial for the treatment of type 2 diabetes. This study compiles exhaustively all accessible information on glipizide, from preclinical to clinical studies. Glipizide may be used in concert with TRAIL to treat cancer cells; in vitro studies have shown that it suppresses angiogenesis and vasculogenesis while shielding cells from glycation-induced damage. Anticonvulsant effects and modifications in the pharmacokinetics of other medications, such as Divalproex Sodium, were seen in glipizide in vivo experiments. Propranolol amplifies glipizide's hypoglycemic effect briefly in normal animals but consistently enhances it in diabetic ones. In the treatment of cancer and neurodegenerative poly(Q) illnesses, glipizide has demonstrated to offer potential therapeutic advantages. It is ineffective in preventing DENA-induced liver cancer and may cause DNA damage over time. The way glipizide interacts with genetic variants may increase the risk of hypoglycemia. Combining Syzygium cumini and ARBE to glipizide may enhance glycemic and lipid control in type 2 diabetes. Individuals with coronary artery disease who take glipizide or glyburide have an increased risk of death. The risk of muscular responses and acute pancreatitis is minimal when glipizide and dulaglutide are combined. In conclusion, glipizide has shown promising therapeutic efficacy across a variety of disorders.
Asunto(s)
Diabetes Mellitus Tipo 2 , Pancreatitis , Humanos , Glipizida/efectos adversos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inducido químicamente , Enfermedad Aguda , Glucemia , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológicoRESUMEN
Olmesartan, originally known for its antihypertensive properties, exhibits promising potential in addressing inflammation-mediated diseases. As an angiotensin II receptor blocker (ARB), Olmesartan influences pivotal pathways, including reactive oxygen species, cytokines, NF-κB, TNF-α, and MAPK. This suggests a viable opportunity for repurposing the drug in conditions such as ulcerative colitis, neuropathy, nephropathy, and cancer, as supported by multiple preclinical studies. Ongoing clinical trials, particularly in cardiomyopathy and nephropathy, suggest a broader therapeutic scope for Olmesartan. Repurposing efforts would entail comprehensive investigations using disease-specific preclinical models and dedicated clinical studies. The drug's established safety profile, wide availability, and well-understood ARB mechanism of action offer distinct advantages that could facilitate a streamlined repurposing process. In summary, Olmesartan's versatile impact on inflammation-related pathways positions it as a promising candidate for repurposing across various diseases. Ongoing clinical trials and the drug's favorable attributes enhance its appeal for further exploration and potential application in diverse medical contexts.
Asunto(s)
Antagonistas de Receptores de Angiotensina , Hipertensión , Imidazoles , Tetrazoles , Humanos , Inhibidores de la Enzima Convertidora de Angiotensina , Hipertensión/tratamiento farmacológico , Inflamación/tratamiento farmacológicoRESUMEN
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion disease, are characterized by the conversion of normally soluble proteins or peptides into aggregated amyloidal fibrils. These diseases result in the permanent loss of specific types of neurons, making them incurable and devastating. Research on animal models of memory problems mentioned in this article contributes to our knowledge of brain health and functionality. Neurodegenerative disorders, which often lead to cognitive impairment and dementia, are becoming more prevalent as global life expectancy increases. These diseases cause severe neurological impairment and neuronal death, making them highly debilitating. Exploring and understanding these complex diseases offer significant insights into the fundamental processes essential for maintaining brain health. Exploring the intricate mechanisms underlying neurodegenerative diseases not only holds promise for potential treatments but also enhances our understanding of fundamental brain health and functionality. By unraveling the complexities of these disorders, researchers can pave the way for advancements in diagnosis, treatment, and ultimately, improving the lives of individuals affected by neurodegenerative diseases.
RESUMEN
The pathophysiological processes of dementia and cognitive impairment are linked to advanced glycation end products (AGEs) and their receptor (RAGE).The neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau protein and senile plaques (SPs), which are brought on by amyloid beta (Aß) deposition, are the hallmarks of Alzheimer's disease (AD), a progressive neurodegenerative condition. Advanced glycation end products that are produced as a result of vascular dysfunction are bound by the receptor for advanced glycation end products (RAGE). Dementia and cognitive impairment could develop when RAGE binds to Aß and produces reactive oxygen species, aggravating Aß buildup and ultimately resulting in SPs and NFTs. RAGE could be a more powerful biomarker than Aß because it is implicated in early AD. The resident immune cells in the brain known as microglia are essential for healthy brain function. Microglia is prominent in the amyloid plaques' outside border as well as their central region in Alzheimer's disease. Microglial cells, in the opinion of some authors, actively contribute to the formation of amyloid plaques. In this review, we first discuss the early diagnosis of dementia and cognitive impairment, and then detail the interaction between RAGE and Aß and Tau that is necessary to cause dementia and cognitive impairment pathology, and it is anticipated that the creation of RAGE probes will help in the diagnosis and treatment of dementia and cognitive impairment.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Receptor para Productos Finales de Glicación Avanzada , Humanos , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Productos Finales de Glicación Avanzada/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Receptor para Productos Finales de Glicación Avanzada/metabolismoRESUMEN
Nanotechnology has emerged as an inspiring tool for the effective delivery of drugs to help treat Coronary heart disease (CHD) which represents the most prevalent reason for mortality and morbidity globally. The current study focuses on the assessment of the cardioprotective prospective ofanovel combination nanoformulation of sericin and carvedilol. Sericin is a silk protein obtained from Bombyx mori cocoon and carvedilol is a synthetic nonselective ß-blocker. In this present study, preparation of chitosan nanoparticles was performed via ionic gelation method and were evaluated for cardioprotective activity in doxorubicin (Dox)-induced cardiotoxicity. Serum biochemical markers of myocardial damage play a substantial role in the analysis of cardiovascular ailments and their increased levels have been observed to be significantly decreased in treatment groups. Treatment groups showed a decline in the positivity frequency of the Troponin T test as well. The NTG (Nanoparticle Treated Group), CSG (Carvedilol Standard Group), and SSG (Sericin Standard Group) were revealed to have reduced lipid peroxide levels (Plasma and heart tissue) highly significantly at a level of p < 0.01 in comparison with the TCG (Toxic Control Group). Levels of antioxidants in the plasma and the cardiac tissue were also established to be within range of the treated groups in comparison to TCG. Mitochondrial enzymes in cardiac tissue were found to be elevated in treated groups. Lysosomal hydrolases accomplish a significant role in counteracting the inflammatory pathogenesis followed by disease infliction, as perceived in the TCG group. These enzyme levels in the cardiac tissue were significantly improved after treatment with the nanoformulation. Total collagen content in the cardiac tissue of the NTG, SSG, and CSG groups was established to be highly statistically significant at p < 0.001 as well as statistically significant at p < 0.01, respectively. Hence, the outcomes of this study suggest that the developed nanoparticle formulation is effective against doxorubicin-induced cardiotoxicity.
RESUMEN
The receptor of Advanced Glycation Endproducts (RAGE) and Advanced Glycation Endproducts (AGE) have multiple functions in our body and their restraint are being observed in neurodegenerative and memory impairment disorders. The review of different pathways allows an understanding of the probable mechanism of neurodegeneration and memory impairment involving RAGE and AGE. Commonly we observe AGE accumulation in neural cells and tissues but the extent of accumulation increases with the presence of memory impairment disorder. The presence of AGEs can also be seen in morbid accumulation, pathological structures in the form of amyloid clots, and nervous fibrillary tangles in Alzheimer's Disease (AD) and memory impairment disease.Many neuropathological and biochemical aspects of AD are explained by AGEs, including widespread protein crosslinking, glial activation of oxidative stress, and neuronal cell death. Oxidative stress is due to different reasons and glycation end products set in motion and form or define various actions which are normally due to AGE changes in a pathogenic cascade. By regulating the transit of ß-amyloid in and out of the brain or altering inflammatory pathways, AGE and it's ensnare receptor such as soluble RAGE may function as blockage or shield AD development. RAGE activates the transcription-controlling factor Necrosis Factor (NF-κB) and increases the protraction of cytokines, like a higher number of Tumor Necrosis Factor (TNF-α) and Interleukin (IL-I) by inducing several signal transduction cascades. Furthermore, binding to RAGE can pro-activate reactive oxygen species (ROS), which is popularly known to cause neuronal death.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal , Productos Finales de Glicación Avanzada/metabolismoRESUMEN
Nanotechnology is a great choice for medical research, and the green synthesis approach is a novel and better way to synthesize nanoparticles. Biological sources are cost-effective, environmentally friendly, and allow large-scale production of nanoparticles. Naturally obtained 3 ß-hydroxy-urs-12-en-28-oic acids reported for neuroprotective and dendritic structure are reported as solubility enhancers. Plants are free from toxic substances and act as natural capping agents. In this review, the pharmacological properties of ursolic acid (UA) and the structural properties of the dendritic structure are discussed. UA acid appears to have negligible toxicity and immunogenicity, as well as favorable biodistribution, according to the current study, and the dendritic structure improves drug solubility, prevents drug degradation, increases circulation time, and potentially targets by using different pathways with different routes of administration. Nanotechnology is a field in which materials are synthesized at the nanoscale. Nanotechnology could be the next frontier of humankind's technological advancement. Richard Feynman first used the term 'Nanotechnology' in his lecture, "There is Plenty of Room at the Bottom," on 29th December, 1959, and since then, interest has increased in the research on nanoparticles. Nanotechnology is capable of helping humanity by solving major challenges, particularly in neurological disorders like Alzheimer's disease (AD), the most prevalent type, which may account for 60-70% of cases. Other significant forms of dementia include vascular dementia, dementia with Lewy bodies (abnormal protein aggregates that form inside nerve cells), and a number of illnesses that exacerbate frontotemporal dementia. Dementia is an acquired loss of cognition in several cognitive domains that are severe enough to interfere with social or professional functioning. However, dementia frequently co-occurs with other neuropathologies, typically AD with cerebrovascular dysfunction. Clinical presentations show that neurodegenerative diseases are often incurable because patients permanently lose some neurons. A growing body of research suggests that they also advance our knowledge of the processes that are probably crucial for maintaining the health and functionality of the brain. Serious neurological impairment and neuronal death are the main features of neurodegenerative illnesses, which are also extremely crippling ailments. The most prevalent neurodegenerative disorders cause cognitive impairment and dementia, and as average life expectancy rises globally, their effects become more noticeable.
RESUMEN
It is well recognized that cyclic adenosine monophosphate (cAMP) signaling within neurons plays a key role in the foundation of long-term memories. Memory storage is the process that demands the movement of signals, neural plasticity, and the molecules which can transfer the signals from the sensory neuron to the dorsal root ganglion (DRG) neurons and later into the temporal region of the brain. The discovery of cAMP in 1958 as the second messenger also had a role in memory formation and other neural aspects. Further, in 1998 the scientists found that cAMP does not just activate protein kinase A (PKA) but also exchange protein directly activated by cAMP (Epac) which has an active role to play in hyperalgesia, memory, and signaling. The cAMP has three targets, hyperpolarization-activated cyclic nucleotide modulated (HCN) channels, protein kinase A (PKA), and exchange protein activated by cAMP (Epac). Different research has exposed that both PKA and HCN channels are significant for long-term memory creation. Epac is a cAMP-dependent guanine nucleotide exchange factor for the small G proteins including Rap1. However, slight information is there about the role of Epac in this process. The effects of cAMP are predominantly imparted by activating protein kinase A (PKA) and the more newly discovered exchange proteins are directly activated by cAMP 1 and 2 (EPAC1 and EPAC2). This review provides an insight regarding the function and role of both of these secondary messengers in memory and nerve signaling.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido , Transducción de SeñalRESUMEN
Microglia is cells of mesodermal/mesenchymal origin that migrate into the central nervous system (CNS) to form resident macrophages inside the special brain microenvironment. Intact with both neuronal and non-neuronal cells, microglia is highly active cells. Continuous process extension and retraction allows microglia to scan the brain parenchyma for threats. They are also able to change their morphology from ramified to amoeboid, which is a sign of cell activity. In response to pleiotropic stimuli such as neurotransmitters, cytokines, and plasma proteins, microglia express a diverse range of receptors. As controllers of synaptic activities and phagocytosis of developing neurons, they serve a critical role in the healthy brain and have significant effects on synaptic plasticity and adult neurogenesis. A frequent cause of hypoparathyroidism is a mutation in the gene glial cells missing-2 (GCM2). Neonatal hypoparathyroidism has an amorphic recessive GCM2 mutation, while autosomal dominant hypoparathyroidism has a dominant-negative GCM2 mutation. Curiously, familial isolated hyperparathyroidism has been associated with activating GCM2 mutation. In addition to seizures, neurocognitive impairment, carpopedal spasm, tingling and numbness are common clinical manifestations of hypoparathyroidism. Biogenic amines are a group of four neurotransmitters that belong to that category and these include serotonin, dopamine, norepinephrine, and epinephrine. Numerous antidepressants prevent the reuptake from occurring the brain-gut axis is hardwired through the CNS, enteric nervous system (ENS), neuroendocrine linkages and highly innervated nerve plexuses.
Asunto(s)
Hipoparatiroidismo , Microglía , Recién Nacido , Adulto , Humanos , Microglía/metabolismo , FN-kappa B , Neuronas , Transducción de Señal , Hipoparatiroidismo/genética , Hipoparatiroidismo/metabolismoRESUMEN
Alzheimer disease is a neurodegenerative disease that is signified by cognitive decline, memory loss, and erratic behavior. Dendrimers are a type of polymer that has a well-defined structure, a high degree of molecular uniformity, and a low polydispersity which have shown to be effective intracellular drug carriers for bring down the in numerous cases. The data reported by the clinical trials and chemical bonds of dendrimers loading and biological properties that may be used in the bringing out the treatment of nano formulation for Alzheimer disease. Below-range dendrimers have an unlocked figure, but higher-range dendrimers have a more globular and dense structure so handling is difficult. Dendrimers are similar in size to a variety of biological structures; for example, fifth-generation polyamidoamine (PAMAM) dendrimers are similar in size and shape to haemoglobin (5.5 nm diameter). Each generation of dendrimer is described in terms of size, shape, molecular weight, and the number of surface functional groups, with increasing growth specified in terms of 'generation number.' In contrast, Hawker and Frechet were the first to report the convergent approach. A stepwise repeating reaction strategy is used to synthesize dendrimers radically from a central core. The value of dendrimers as drug carriers is discussed in this paper. The information presented in this article can provide useful references for further studies on making dendrimers and applications.
Asunto(s)
Enfermedad de Alzheimer , Dendrímeros , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/tratamiento farmacológico , Dendrímeros/química , Dendrímeros/uso terapéutico , Portadores de Fármacos/química , Humanos , PolímerosRESUMEN
Objective: Medicinal plants having antioxidant potential possess numerous constituents which are responsible for different beneficial effects and are used as an alternative resource of medicine to lessen diseases linked with oxidative stress. Flavonoids are identified in the plants since ages and display wide spectrum of biological actions that might be able to stimulate the steps which are disturbed in different diseases. Flavonoids are significant natural compounds with various biologic properties, among which the most common is the anti-oxidant potential. Citrus flavonoids establish an important stream of flavonoids. Naringin, very common flavonoids present in the diet, belongs to the family of flavanone. It is the principal constituent of citrus family that contains flavonoids for example tomatoes, grapefruits and oranges. Materials and Methods: In this article, we reviewed naringin with respect to sources, chemical property, pharmacokinetics, pharmacological activity, and novel formulations. The literature survey has been done by searching different databases such as Psyc INFO, Science Direct, PubMed, EMBASE, Google, Google Scholar, Medline. Results: Naringin is known to behave as an antioxidant and possess anti-inflammatory, anti-apoptotic, anti-atherosclerotic, neuroprotective, anti-psychotic, anti-asthmatic, anti-diabetic, hepatoprotective, anti-tussive, cardioprotective, and anti-obesity activity. Further clinical studies using large sample sizes remain essential to obtain the appropriate dose and form of naringin for averting diseases. Furthermore, the therapeutic approach of these bioflavonoids is significantly inappropriate due to the lack of clinical evidence. Different plants must be explored further to find these bioflavonoids in them. Conclusion: The results of this exploration provides biological actions of bioflavonoid (naringin), predominantly on pharmacological and novel dosage forms of naringin.
RESUMEN
In 1976, Japanese microbiologist Akira Endo discovered the first statin as a product of the fungus Penicillium citrinum that inhibited the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Their primary mode of action is to lower the blood cholesterol by decreasing hepatic cholesterol production, which upregulates hepatic low-density lipoprotein (LDL) receptors and increases LDL-cholesterol clearance. In addition to cholesterol lowering, statins inhibit other downstream products of the mevalonate pathway, causing the so-called pleiotropic effects. As a result of their pleiotropic effects statins modulate virtually all known processes of atherosclerosis and have beneficial effects outside the cardiovascular system Statins inhibit the post-translational prenylation of small GTP-binding proteins such as Rho, Rac, as well as their downstream effectors such as Rho kinase and nicotinamide adenine dinucleotide phosphate oxidases since they suppress the synthesis of isoprenoid intermediates in the cholesterol biosynthetic pathway altering the expression of endothelial nitric oxide synthase, the stability of atherosclerotic plaques, production of proinflammatory cytokines, reactive oxygen species, platelet reactivity, development of cardiac hypertrophy and fibrosis in cell culture and animal experiments. Inhibition of Rho and Rho-associated coiled-coil containing protein kinase (ROCK), has emerged as the principle mechanisms underlying the pleiotropic effects of statins. However, the relative contributions of statin pleiotropy to clinical outcomes are debatable and difficult to measure because the amount of isoprenoid inhibition by statins corresponds to some extent with the amount of LDL-cholesterol decrease. This article examines some of the existing molecular explanations underlying statin pleiotropy and discusses if they have clinical relevance in cardiovascular diseases.
Asunto(s)
Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Animales , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , LDL-Colesterol , Colesterol , TerpenosRESUMEN
Amidst several pathophysiological cascades, Advanced Glycation End products (AGEs) have been identified as a pivotal aetiology behind the pathogenesis and progression of cardiovascular disorders, by inducing oxidative stress and inflammation of myocardial and vascular tissues. Non-enzymatic glycation of reducing sugars with amino acids in proteins, lipids, and nucleic acids produce AGEs, which are a diverse set of compounds. Although AGEs are mostly generated endogenously, current research suggests that nutrition is a major exogenous source of AGEs. Extracellular and intracellular structure and function are affected by the presence and accumulation of AGEs in several cardiac cell types. AGEs give rise to several microvascular and macrovascular problems by establishing cross-links between molecules in the extracellular matrix's basement membrane as well as interacting with receptors for advanced glycation end products (RAGE). The transcription factor nuclear factor kappa B and its RAGE target genes are upregulated when RAGE is activated by AGEs. Engagement increases oxidative stress and triggers inflammatory and fibrotic responses, all of which contribute to the onset and progression of life-threatening cardiovascular diseases. This article discusses the probable targets of glycation in cardiac cells, as well as the underlying mechanisms that lead to heart failure.
Asunto(s)
Enfermedades Cardiovasculares , Ácidos Nucleicos , Aminoácidos , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Lípidos , FN-kappa B/fisiología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , AzúcaresRESUMEN
Ovarian cancer is characterized by the establishment of tolerance, the recurrence of disease, as well as a poor prognosis. Gene signatures in ovarian cancer cells enable cancer medicine research, therapy, prevention, & management problematic. Notwithstanding advances in tumor puncture surgery, novel combinations regimens, and abdominal radiation, which can provide outstanding reaction times, the bulk of gynecological tumor patients suffer from side effects & relapse. As a consequence, more therapy alternatives for individuals with ovarian cancer must always be studied to minimize side effects and improve progression-free and total response rates. The development of cancer medications is presently undergoing a renaissance in the quest for descriptive and prognostic ovarian cancer biomarkers. Nevertheless, abnormalities in the BRCA2 or BRCA1 genes, a variety of hereditary predispositions, unexplained onset and progression, molecular tumor diversity, and illness staging can all compromise the responsiveness and accuracy of such indicators. As a result, current ovarian cancer treatments must be supplemented with broad-spectrum & customized targeted therapeutic approaches. The objective of this review is to highlight recent contributions to the knowledge of the interrelations between selected ovarian tumor markers, various perception signs, and biochemical and molecular signaling processes, as well as one's interpretation of much more targeted and effective treatment interventions.