Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biophotonics ; 16(3): e202200174, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36101492

RESUMEN

White blood cell (WBC) detection plays a vital role in peripheral blood smear analysis. However, cell detection remains a challenging task due to multi-cell adhesion, different staining and imaging conditions. Owing to the powerful feature extraction capability of deep learning, object detection methods based on convolutional neural networks (CNNs) have been widely applied in medical image analysis. Nevertheless, the CNN training is time-consuming and inaccuracy, especially for large-scale blood smear images, where most of the images are background. To address the problem, we propose a two-stage approach that treats WBC detection as a small salient object detection task. In the first saliency detection stage, we use the Itti's visual attention model to locate the regions of interest (ROIs), based on the proposed adaptive center-surround difference (ACSD) operator. In the second WBC detection stage, the modified CenterNet model is performed on ROI sub-images to obtain a more accurate localization and classification result of each WBC. Experimental results showed that our method exceeds the performance of several existing methods on two different data sets, and achieves a state-of-the-art mAP of over 98.8%.


Asunto(s)
Leucocitos , Redes Neurales de la Computación , Adhesión Celular
2.
Comput Intell Neurosci ; 2022: 4364252, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211164

RESUMEN

To further improve the approximate nearest neighbor (ANN) search performance, an accumulative quantization (AQ) is proposed and applied to effective ANN search. It approximates a vector with the accumulation of several centroids, each of which is selected from a different codebook. To provide accurate approximation for an input vector, an iterative optimization is designed when training codebooks for improving their approximation power. Besides, another optimization is introduced into offline vector quantization procedure for the purpose of minimizing overall quantization errors. A hypersphere-based filtration mechanism is designed when performing AQ-based exhaustive ANN search to reduce the number of candidates put into sorting, thus yielding better search time efficiency. For a query vector, a self-centered hypersphere is constructed, so that those vectors not lying in the hypersphere are filtered out. Experimental results on public datasets demonstrate that hypersphere-based filtration can improve ANN search time efficiency with no weakening of search accuracy; besides, the proposed AQ is superior to the state of the art on ANN search accuracy.


Asunto(s)
Algoritmos , Análisis por Conglomerados
3.
Comput Intell Neurosci ; 2022: 1610658, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093492

RESUMEN

White blood cell (WBC) morphology examination plays a crucial role in diagnosing many diseases. One of the most important steps in WBC morphology analysis is WBC image segmentation, which remains a challenging task. To address the problems of low segmentation accuracy caused by color similarity, uneven brightness, and irregular boundary between WBC regions and the background, a WBC image segmentation network based on U-Net combining residual networks and attention mechanism was proposed. Firstly, the ResNet50 residual block is used to form the main unit of the encoder structure, which helps to overcome the overfitting problem caused by a small number of training samples by improving the network's feature extraction capacity and loading the pretraining weight. Secondly, the SE module is added to the decoder structure to make the model pay more attention to useful features while suppressing useless ones. In addition, atrous convolution is utilized to recover full-resolution feature maps in the decoder structure to increase the receptive field of the convolution layer. Finally, network parameters are optimized using the Adam optimization technique in conjunction with the binary cross-entropy loss function. Experimental results on BCISC and LISC datasets show that the proposed approach has higher segmentation accuracy and robustness.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos
4.
Springerplus ; 5: 404, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27047730

RESUMEN

To eliminate the staircasing effect for total variation filter and synchronously avoid the edges blurring for fourth-order PDE filter, a hybrid regularizers-based adaptive anisotropic diffusion is proposed for image denoising. In the proposed model, the [Formula: see text]-norm is considered as the fidelity term and the regularization term is composed of a total variation regularization and a fourth-order filter. The two filters can be adaptively selected according to the diffusion function. When the pixels locate at the edges, the total variation filter is selected to filter the image, which can preserve the edges. When the pixels belong to the flat regions, the fourth-order filter is adopted to smooth the image, which can eliminate the staircase artifacts. In addition, the split Bregman and relaxation approach are employed in our numerical algorithm to speed up the computation. Experimental results demonstrate that our proposed model outperforms the state-of-the-art models cited in the paper in both the qualitative and quantitative evaluations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA