Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 255: 114742, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37032575

RESUMEN

Cadmium (Cd) pollution in crops seriously affects the ecosystem and human health. Effective measures should be employed to reduce the absorption and accumulation of cadmium in crops. Currently, there are many pieces of research on the application of biochar (BC) and selenium (Se) alone to the remediation of soil Cd pollution; however, few investigations have been devoted to the application of BC and Se together to the remediation of soil Cd pollution. The peanut was taken as the target crop to explore the effects of exogenous selenium and biochar on the remediation of soil Cd pollution. The response of the soil bacterial community to two levels of Cd concentration and its relationship with soil properties and Cd availability are methodically investigated. This study sets two cadmium pollution concentrations of low Cd (5 mg/ kg) and high Cd (20 mg/kg), as well as six treatments: blank, BC, soil Se, soil Se-BC, leaf Se, and leaf Se-BC. The achieved results revealed that both Se and BC could noticeably enhance the yield of peanut seeds and reduce the Cd content in peanut seeds. Among them, Se-BC treatment on soil exhibits the most influence, which reduces the Cd content by 47.86%. Se and BC also affect the physical and chemical properties of soil and remarkably magnify the content of soil available phosphorus, organic matter, soil pH, and soil conductivity. For instance, then effect is detected in the case of applying selenium biochar to soil, leading to an increase of about 64.38%, 72.62%, 2.64%, and 61.15%, respectively, and reducing the content of soil available cadmium by 21.02%. Redundancy analysis confirms that these properties enhance the abundance of dominant bacteria Actinobacteria, Proteobacteria, and Chloroflexi. The correlation analysis also indicates that Saccharimonadales, Bacillus, Arthrobacter, and other bacteria with the function of reducing the bioavailability of cadmium in soil reveal a considerable positive correlation with the variations of physical and chemical properties. In general, exogenous Se and BC incorporate to drop the content of available Cd in the soil through direct passivation, passivation caused by soil environmental change, and passivation caused by altering the soil microbial community structure; as a result, the migration and enrichment of Cd in peanut seeds are blocked and reduced. Moreover, the mixed application of BC and soil Se exhibits the best effect.


Asunto(s)
Selenio , Contaminantes del Suelo , Humanos , Arachis/química , Cadmio/análisis , Selenio/farmacología , Selenio/análisis , Suelo/química , Ácido Selenioso , Ecosistema , Contaminantes del Suelo/análisis , Carbón Orgánico/farmacología , Carbón Orgánico/química , Bacterias , Productos Agrícolas
2.
Artículo en Inglés | MEDLINE | ID: mdl-35329226

RESUMEN

Cadmium (Cd) pollution in soil, particularly in peanut production, is a problem that has attracted global concern and needs solutions urgently. Selenium (Se) can alleviate Cd toxicity; however, the underlying mechanisms are not completely understood. Therefore, two varieties of peanut (Arachis hypogaea Linn.), "Huayu 23" and "Huayu 20", were chosen as the target crops for this study. A pot experiment was conducted to investigate the effects of two Se application methods combined with biochar on the accumulation of Cd and Se, and the best application method was identified. In addition, the role of Se in alleviating Cd toxicity in peanuts was studied. The results indicated that both Se and biochar decreased the Cd content in peanuts and alleviated Cd toxicity. However, the combined application of foliar Se and biochar significantly increased the peanut biomass by 73.44-132.41%, increased the grain yield of Huayu 23 by 0.60-1.09 fold, and Huayu 20 by 2.38-3.48 fold. Additionally, Cd content in peanut grains was decreased by 32.81-50.07%, and Se content was increased by 31.57-99.75 folds. Biochar can decrease the absorption of Cd from the soil, while Se can increase the accumulation of Cd in cell vacuoles by increasing glutathione and phytochelatin to decrease the movement of Cd into the grains. Therefore, our results indicate that the combined application of foliar Se and biochar can effectively promote the enrichment of Se in peanuts and suppress Cd toxicity.


Asunto(s)
Oryza , Selenio , Contaminantes del Suelo , Arachis , Cadmio/análisis , Carbón Orgánico , Hojas de la Planta/química , Selenio/farmacología , Suelo , Contaminantes del Suelo/análisis
3.
Sci Total Environ ; 853: 158455, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36063941

RESUMEN

China is a major producer and consumer of freshwater fish, which can provide nutrients to the human body but is also of great concern because of the bioaccumulation and amplification of heavy metals that are directly related to human health. In this paper, we reviewed the accumulation and distribution patterns of lead (Pb), arsenic (As), mercury (Hg), cadmium (Cd), and chromium (Cr) in freshwater fish from 2010 to 2020 in nine basins of China (Yangtze River, Pearl River, Yellow River, Haihe River, Huaihe River, Songhua and Liaohe River, Continental, Southeast, and Southwest basins), assessed the health risks, and compared them with those in Chinese marine fish, international freshwater fish, Chinese wild freshwater fish, and artificially cultured freshwater fish. The results showed that 1) the pollution status of the five heavy metals in freshwater fish from nine basins in China is at an intermediate level internationally; 2) the magnitude of heavy metal concentration in four types of artificially farmed freshwater fish and wild freshwater fish is ranked as follows: rice-farmed fish < cage-farmed fish < pond-farmed fish < lake-farmed fish < wild fish; 3) the noncarcinogenic risk factors for heavy metals in freshwater fish in the nine major basins in China were <1 for adults, but the noncarcinogenic risk factors for heavy metals in freshwater fish in the Yellow River, Yangtze River, Pearl River, Songhua and Liaohe River, and Huaihe River basins were all >1 for children.


Asunto(s)
Arsénico , Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Adulto , Niño , Animales , Humanos , Cadmio , Arsénico/análisis , Monitoreo del Ambiente/métodos , Plomo , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Ríos , Peces , Medición de Riesgo , Cromo/análisis , Lagos , China , Sedimentos Geológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA