RESUMEN
MOTIVATION: Accurately detecting pathogenic microorganisms requires effective primers and probe designs. Literature-derived primers are a valuable resource as they have been tested and proven effective in previous research. However, manually mining primers from published texts is time-consuming and limited in species scop. RESULTS: To address these challenges, we have developed MiPRIME, a real-time Microbial Primer Mining platform for primer/probe sequences extraction of pathogenic microorganisms with three highlights: (i) comprehensive integration. Covering >40 million articles and 548 942 organisms, the platform enables high-frequency microbial gene discovery from a global perspective, facilitating user-defined primer design and advancing microbial research. (ii) Using a BioBERT-based text mining model with 98.02% accuracy, greatly reducing information processing time. (iii) Using a primer ranking score, PRscore, for intelligent recommendation of species-specific primers. Overall, MiPRIME is a practical tool for primer mining in the pan-microbial field, saving time and cost of trial-and-error experiments. AVAILABILITY AND IMPLEMENTATION: The web is available at {{https://www.ai-bt.com}}.
Asunto(s)
Cartilla de ADN , Minería de Datos , Minería de Datos/métodos , Programas Informáticos , Bacterias/genética , Bacterias/clasificaciónRESUMEN
BACKGROUND: There is controversy about whether the amniotic fluid contains bacteria. With the use of sequencing-based methods, recent studies report that the amniotic fluid is colonized by microorganisms. However, background-contaminating DNA might lead to false-positive findings when such a low microbial biomass sample is examined. OBJECTIVE: The purpose of this study was to determine whether the midtrimester amniotic fluid of patients who subsequently had normal pregnancy outcomes contains a microbial signature. STUDY DESIGN: In this prospective cohort study, 42 amniotic fluid samples were collected from 37 pregnancies (5 twin and 32 singletons) during genetic amniocentesis in the midtrimester. The subsequent pregnancy outcomes of all the participants were followed. Multiple methods were used to detect the presence of microorganisms in this study, which included cultivation, quantitative real-time polymerase chain reaction, and 16S ribosomal RNA gene sequencing. Multiple positive control samples (n=16) served as quality control samples and included 3 adult fecal samples, 4 vaginal swabs, and 9 artificial bacterial communities that were run in parallel with negative control samples (n=12) that included 4 samples from the hospital operating room and 8 samples from the laboratory, to account for background-contaminating DNA during each step of the experiments. RESULTS: No bacteria under anaerobic or aerobic conditions or genital mycoplasmas were cultured from any of the amniotic fluid samples. Quantitative polymerase chain reaction did not reveal greater copy numbers of 16S ribosomal RNA gene in amniotic fluid samples than in negative control samples. 16S Ribosomal RNA gene sequencing did not indicate a significant difference in the microbial richness or community structures between amniotic fluid and negative control samples. CONCLUSION: With multiple methods of microbiologic inquiry, no microorganisms were identified in the midtrimester amniotic fluid of healthy pregnancies with a normal pregnancy outcome.