Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Brain ; 144(9): 2863-2878, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33768249

RESUMEN

Spreading depolarization is a slowly propagating wave of massive cellular depolarization associated with acute brain injury and migraine aura. Genetic studies link depolarizing molecular defects in Ca2+ flux, Na+ current in interneurons, and glial Na+-K+ ATPase with spreading depolarization susceptibility, emphasizing the important roles of synaptic activity and extracellular ionic homeostasis in determining spreading depolarization threshold. In contrast, although gene mutations in voltage-gated potassium ion channels that shape intrinsic membrane excitability are frequently associated with epilepsy susceptibility, it is not known whether epileptogenic mutations that regulate membrane repolarization also modify spreading depolarization threshold and propagation. Here we report that the Kcnq2/Kv7.2 potassium channel subunit, frequently mutated in developmental epilepsy, is a spreading depolarization modulatory gene with significant control over the seizure-spreading depolarization transition threshold, bi-hemispheric cortical expression, and diurnal temporal susceptibility. Chronic DC-band cortical EEG recording from behaving conditional Kcnq2 deletion mice (Emx1cre/+::Kcnq2flox/flox) revealed spontaneous cortical seizures and spreading depolarization. In contrast to the related potassium channel deficient model, Kv1.1-KO mice, spontaneous cortical spreading depolarizations in Kcnq2 cKO mice are tightly coupled to the terminal phase of seizures, arise bilaterally, and are observed predominantly during the dark phase. Administration of the non-selective Kv7.2 inhibitor XE991 to Kv1.1-KO mice partly reproduced the Kcnq2 cKO-like spreading depolarization phenotype (tight seizure coupling and bilateral symmetry) in these mice, indicating that Kv7.2 currents can directly and actively modulate spreading depolarization properties. In vitro brain slice studies confirmed that Kcnq2/Kv7.2 depletion or pharmacological inhibition intrinsically lowers the cortical spreading depolarization threshold, whereas pharmacological Kv7.2 activators elevate the threshold to multiple depolarizing and hypometabolic spreading depolarization triggers. Together these results identify Kcnq2/Kv7.2 as a distinctive spreading depolarization regulatory gene, and point to spreading depolarization as a potentially significant pathophysiological component of KCNQ2-linked epileptic encephalopathy syndromes. Our results also implicate KCNQ2/Kv7.2 channel activation as a potential adjunctive therapeutic target to inhibit spreading depolarization incidence.


Asunto(s)
Encéfalo/fisiología , Depresión de Propagación Cortical/fisiología , Canal de Potasio KCNQ2/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Anilidas/farmacología , Animales , Encéfalo/efectos de los fármacos , Compuestos Bicíclicos con Puentes/farmacología , Carbamatos/farmacología , Depresión de Propagación Cortical/efectos de los fármacos , Canal de Potasio KCNQ2/agonistas , Canal de Potasio KCNQ2/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/deficiencia , Técnicas de Cultivo de Órganos , Fenilendiaminas/farmacología
2.
J Neurophysiol ; 121(4): 1266-1278, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30699052

RESUMEN

Cholinergic vagal nerves projecting from neurons in the brain stem nucleus ambiguus (NAm) play a predominant role in cardiac parasympathetic pacemaking control. Central adrenergic signaling modulates the tone of this vagal output; however, the exact excitability mechanisms are not fully understood. We investigated responses of NAm neurons to adrenergic agonists using in vitro mouse brain stem slices. Preganglionic NAm neurons were identified by ChAT-tdTomato fluorescence in young adult transgenic mice, and their cardiac projection was confirmed by retrograde dye tracing. Juxtacellular recordings detected sparse or absent spontaneous action potentials (AP) in NAm neurons. However, bath application of epinephrine or norepinephrine strongly and reversibly activated most NAm neurons regardless of their basal firing rate. Epinephrine was more potent than norepinephrine, and this activation largely depends on α1-adrenoceptors. Interestingly, adrenergic activation of NAm neurons does not require an ionotropic synaptic mechanism, because postsynaptic excitatory or inhibitory receptor blockade did not occlude the excitatory effect, and bath-applied adrenergic agonists did not alter excitatory or inhibitory synaptic transmission. Instead, adrenergic agonists significantly elevated intrinsic membrane excitability to facilitate generation of recurrent action potentials. T-type calcium current and hyperpolarization-activated current are involved in this excitation pattern, although not required for spontaneous AP induction by epinephrine. In contrast, pharmacological blockade of persistent sodium current significantly inhibited the adrenergic effects. Our results demonstrate that central adrenergic signaling enhances the intrinsic excitability of NAm neurons and that persistent sodium current is required for this effect. This central balancing mechanism may counteract excessive peripheral cardiac excitation during increased sympathetic tone. NEW & NOTEWORTHY Cardiac preganglionic cholinergic neurons in the nucleus ambiguus (NAm) are responsible for slowing cardiac pacemaking. This study identified that adrenergic agonists can induce rhythmic action potentials in otherwise quiescent cholinergic NAm preganglionic neurons in brain stem slice preparation. The modulatory influence of adrenaline on central parasympathetic outflow may contribute to both physiological and deleterious cardiovascular regulation.


Asunto(s)
Potenciales de Acción , Agonistas Adrenérgicos/farmacología , Fibras Autónomas Preganglionares/efectos de los fármacos , Corazón/inervación , Bulbo Raquídeo/fisiología , Periodicidad , Animales , Fibras Autónomas Preganglionares/metabolismo , Fibras Autónomas Preganglionares/fisiología , Canales de Calcio Tipo T/metabolismo , Epinefrina/farmacología , Femenino , Masculino , Bulbo Raquídeo/efectos de los fármacos , Ratones , Norepinefrina/farmacología , Canales de Sodio/metabolismo , Potenciales Sinápticos
3.
Proc Natl Acad Sci U S A ; 113(33): E4895-903, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27482086

RESUMEN

Cardiorespiratory failure is the most common cause of sudden unexplained death in epilepsy (SUDEP). Genetic autopsies have detected "leaky" gain-of-function mutations in the ryanodine receptor-2 (RyR2) gene in both SUDEP and sudden cardiac death cases linked to catecholaminergic polymorphic ventricular tachycardia that feature lethal cardiac arrhythmias without structural abnormality. Here we find that a human leaky RyR2 mutation, R176Q (RQ), alters neurotransmitter release probability in mice and significantly lowers the threshold for spreading depolarization (SD) in dorsal medulla, leading to cardiorespiratory collapse. Rare episodes of sinus bradycardia, spontaneous seizure, and sudden death were detected in RQ/+ mutant mice in vivo; however, when provoked, cortical seizures frequently led to apneas, brainstem SD, cardiorespiratory failure, and death. In vitro studies revealed that the RQ mutation selectively strengthened excitatory, but not inhibitory, synapses and facilitated SD in both the neocortex as well as brainstem dorsal medulla autonomic microcircuits. These data link defects in neuronal intracellular calcium homeostasis to the vulnerability of central autonomic brainstem pathways to hypoxic stress and implicate brainstem SD as a previously unrecognized site and mechanism contributing to premature death in individuals with leaky RYR2 mutations.


Asunto(s)
Tronco Encefálico/fisiología , Muerte Súbita Cardíaca/etiología , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Calcio/metabolismo , Electroencefalografía , Potenciales Postsinápticos Excitadores , Femenino , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Transmisión Sináptica
4.
J Neurosci ; 36(2): 405-18, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758833

RESUMEN

Generalized spike-wave seizures involving abnormal synchronization of cortical and underlying thalamic circuitry represent a major category of childhood epilepsy. Inborn errors of Cacna1a, the P/Q-type voltage-gated calcium channel α subunit gene, expressed throughout the brain destabilize corticothalamic rhythmicity and produce this phenotype. To determine the minimal cellular lesion required for this network disturbance, we used neurotensin receptor 1 (Ntsr1) cre-driver mice to ablate floxed Cacna1a in layer VI pyramidal neurons, which supply the sole descending cortical synaptic input to thalamocortical relay cells and reticular interneurons and activate intrathalamic circuits. Targeted Cacna1a ablation in layer VI cells resulted in mice that display a robust spontaneous spike-wave absence seizure phenotype accompanied by behavioral arrest and inhibited by ethosuximide. To verify the selectivity of the molecular lesion, we determined that P/Q subunit proteins were reduced in corticothalamic relay neuron terminal zones, and confirmed that P/Q-mediated glutamate release was reduced at these synapses. Spike-triggered exocytosis was preserved by N-type calcium channel rescue, demonstrating that evoked release at layer VI terminals relies on both P/Q and N-type channels. Whereas intrinsic excitability of the P/Q channel depleted layer VI neurons was unaltered, T-type calcium currents in the postsynaptic thalamic relay and reticular cells were dramatically elevated, favoring rebound bursting and seizure generation. We find that an early P/Q-type release defect, limited to synapses of a single cell-type within the thalamocortical circuit, is sufficient to remodel synchronized firing behavior and produce a stable generalized epilepsy phenotype. SIGNIFICANCE STATEMENT: This study dissects a critical component of the corticothalamic circuit in spike-wave epilepsy and identifies the developmental importance of P/Q-type calcium channel-mediated presynaptic glutamate release at layer VI pyramidal neuron terminals. Genetic ablation of Cacna1a in layer VI neurons produced synchronous spike-wave discharges in the cortex and thalamus that were inhibited by ethosuximide. These mice also displayed N-type calcium channel compensation at descending thalamic synapses, and consistent with other spike-wave models increased low-threshold T-type calcium currents within postsynaptic thalamic relay and reticular neurons. These results demonstrate, for the first time, that preventing the developmental homeostatic switch from loose to tightly coupled synaptic release at a single class of deep layer cortical excitatory output neurons results in generalized spike-wave epilepsy.


Asunto(s)
Canales de Calcio Tipo N/deficiencia , Epilepsia Tipo Ausencia/patología , Neuronas/patología , Tálamo/patología , Corteza Visual/patología , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Canales de Calcio Tipo N/genética , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Etosuximida/uso terapéutico , Potenciales Postsinápticos Excitadores/genética , Femenino , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos Motores/etiología , Trastornos Motores/genética , Mutación/genética , Tiempo de Reacción/genética , Receptores de Neurotensina/metabolismo
5.
Glia ; 63(1): 91-103, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25092804

RESUMEN

Waves of spreading depolarization (SD) have been implicated in the progressive expansion of acute brain injuries. SD can persist over several days, coincident with the time course of astrocyte activation, but little is known about how astrocyte activation may influence SD susceptibility. We examined whether activation of astrocytes modified SD threshold in hippocampal slices. Injection of a lentiviral vector encoding Ciliary neurotrophic factor (CNTF) into the hippocampus in vivo, led to sustained astrocyte activation, verified by up-regulation of glial fibrillary acidic protein (GFAP) at the mRNA and protein levels, as compared to controls injected with vector encoding LacZ. In acute brain slices from LacZ controls, localized 1M KCl microinjections invariably generated SD in CA1 hippocampus, but SD was never induced with this stimulus in CNTF tissues. No significant change in intrinsic excitability was observed in CA1 neurons, but excitatory synaptic transmission was significantly reduced in CNTF samples. mRNA levels of the predominantly astrocytic Na(+) /K(+) -ATPase pump α2 subunit were higher in CNTF samples, and the kinetics of extracellular K(+) transients during matched synaptic activation were consistent with increased K(+) uptake in CNTF tissues. Supporting a role for the Na(+) /K(+) -ATPase pump in increased SD threshold, ouabain, an inhibitor of the pump, was able to generate SD in CNTF tissues. These data support the hypothesis that activated astrocytes can limit SD onset via increased K(+) clearance and suggest that therapeutic strategies targeting these glial cells could improve the outcome following acute brain injuries associated with SD.


Asunto(s)
Astrocitos/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Neuronas/metabolismo , Potasio/metabolismo , Animales , Lesiones Encefálicas/metabolismo , Polaridad Celular/fisiología , Factor Neurotrófico Ciliar/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Regulación hacia Arriba/efectos de los fármacos
6.
J Neurochem ; 125(6): 822-31, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23517525

RESUMEN

We examined the impact of intracellular dialysis on fluorescence detection of neuronal intracellular Zn(2+) accumulation. Comparison between two dialysis conditions (standard; 20 min, brief; 2 min) by standard whole-cell clamp revealed a high vulnerability of intracellular Zn(2+) buffers to intracellular dialysis. Thus, low concentrations of zinc-pyrithione generated robust responses in neurons with standard dialysis, but signals were smaller in neurons with short dialysis. Release from oxidation-sensitive Zn(2+) pools was reduced by standard dialysis, when compared with responses in neurons with brief dialysis. The dialysis effects were partly reversed by inclusion of recombinant metallothionein-3 in the dialysis solution. These findings suggested that extensive dialysis could be exploited for selective detection of transmembrane Zn(2+) influx. Different dialysis conditions were then used to probe responses to synaptic stimulation. Under standard dialysis conditions, synaptic stimuli generated significant FluoZin-3 signals in wild-type (WT) preparations, but responses were almost absent in preparations lacking vesicular Zn(2+) (ZnT3-KO). In contrast, under brief dialysis conditions, intracellular Zn(2+) transients were very similar in WT and ZnT3-KO preparations. This suggests that both intracellular release and transmembrane flux can contribute to intracellular Zn(2+) accumulation after synaptic stimulation. These results demonstrate significant confounds and potential use of intracellular dialysis to investigate intracellular Zn(2+) accumulation mechanisms.


Asunto(s)
Encéfalo/metabolismo , Zinc/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas de Transporte de Catión , Cationes Bivalentes , Femenino , Técnicas In Vitro , Espacio Intracelular/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microdiálisis , Neuronas/metabolismo , Oxidación-Reducción , Técnicas de Placa-Clamp , Sinapsis/metabolismo
7.
JCI Insight ; 8(15)2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37551713

RESUMEN

Spreading depolarization (SD) is a massive wave of cellular depolarization that slowly migrates across the brain gray matter. Cortical SD is frequently generated following brain injury, while less is understood about its potential contribution to genetic disorders of hyperexcitability, such as SCN1A-deficient epilepsy, in which febrile seizure often contributes to disease initiation. Here we report that spontaneous SD waves are predominant EEG abnormalities in the Scn1a-deficient mouse (Scn1a+/R1407X) and undergo sustained intensification following a single hyperthermic seizure. Chronic DC-band EEG recording detected spontaneous SDs, seizures, and seizure-SD complexes in Scn1a+/R1407X mice but not WT littermates. The SD events were infrequent, while a single hyperthermia-induced seizure robustly increased SD frequency over 4-fold during the initial postictal week. This prolonged neurological aftermath could be suppressed by memantine administration. Video, electromyogram, and EEG spectral analysis revealed distinct neurobehavioral patterns; individual seizures were associated with increased motor activities, while SDs were generally associated with immobility. We also identified a stereotypic SD prodrome, detectable over a minute before the onset of the DC potential shift, characterized by increased motor activity and bilateral EEG frequency changes. Our study suggests that cortical SD is a pathological manifestation in SCN1A-deficient epileptic encephalopathy.


Asunto(s)
Epilepsia , Convulsiones Febriles , Ratones , Animales , Convulsiones Febriles/genética , Electroencefalografía , Epilepsia/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética
8.
Neuron ; 111(5): 682-695.e9, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36787748

RESUMEN

Seizures are a frequent pathophysiological feature of malignant glioma. Recent studies implicate peritumoral synaptic dysregulation as a driver of brain hyperactivity and tumor progression; however, the molecular mechanisms that govern these phenomena remain elusive. Using scRNA-seq and intraoperative patient ECoG recordings, we show that tumors from seizure patients are enriched for gene signatures regulating synapse formation. Employing a human-to-mouse in vivo functionalization pipeline to screen these genes, we identify IGSF3 as a mediator of glioma progression and dysregulated neural circuitry that manifests as spreading depolarization (SD). Mechanistically, we discover that IGSF3 interacts with Kir4.1 to suppress potassium buffering and found that seizure patients exhibit reduced expression of potassium handlers in proliferating tumor cells. In vivo imaging reveals that dysregulated synaptic activity emanates from the tumor-neuron interface, which we confirm in patients. Our studies reveal that tumor progression and seizures are enabled by ion dyshomeostasis and identify SD as a driver of disease.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Ratones , Animales , Potasio , Glioma/metabolismo , Encéfalo/metabolismo , Convulsiones , Neoplasias Encefálicas/patología , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo
9.
J Physiol ; 590(22): 5877-93, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22907056

RESUMEN

Spreading depolarizations (SDs) are slowly propagating waves of near-complete neuronal and glial depolarization. SDs have been recorded in patients with brain injury, and the incidence of SD significantly correlates with outcome severity. Although it is well accepted that the ionic dyshomeostasis of SD presents a severe metabolic burden, there is currently limited understanding of SD-induced injury processes at a cellular level. In the current study we characterized events accompanying SD in the hippocampal CA1 region of murine brain slices, using whole-cell recordings and single-cell Ca(2+) imaging. We identified an excitatory phase that persisted for approximately 2 min following SD onset, and accompanied with delayed dendritic ionic dyshomeostasis. The excitatory phase coincided with a significant increase in presynaptic glutamate release, evidenced by a transient increase in spontaneous EPSC frequency and paired-pulse depression of evoked EPSCs. Activation of NMDA receptors (NMDARs) during this late excitatory phase contributed to the duration of individual neuronal depolarizations and delayed recovery of extracellular slow potential changes. Selectively targeting the NMDAR activation following SD onset (by delayed pressure application of a competitive NMDAR antagonist) significantly decreased the duration of cellular depolarizations. Recovery of dendritic Ca(2+) elevations following SD were also sensitive to delayed NMDA antagonist application. Partial inhibition of neuronal energy metabolism converted SD into an irrecoverable event with persistent Ca(2+) overload and membrane compromise. Delayed NMDAR block was sufficient to prevent these acute injurious events in metabolically compromised neurons. These results identify a significant contribution of a late component of SD that could underlie neuronal injury in pathological circumstances.


Asunto(s)
Depresión de Propagación Cortical , Dendritas/fisiología , Potenciales Postsinápticos Excitadores , Receptores de N-Metil-D-Aspartato/metabolismo , Estrés Fisiológico , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Calcio/metabolismo , Señalización del Calcio , Dendritas/metabolismo , Dendritas/patología , Ácido Glutámico/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Azida Sódica/toxicidad
10.
J Neurophysiol ; 107(3): 1032-41, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22131381

RESUMEN

Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarization (spreading depolarization; SD). Massive release of glutamate contributes to SD propagation, and it was recently shown that Zn(2+) is also released from synaptic vesicles during SD. The present study examined consequences of extracellular Zn(2+) accumulation on the propagation of SD. SD mechanisms were studied first in murine brain slices, using focal KCl applications as stimuli and making electrical and optical recordings in hippocampal area CA1. Elevating extracellular Zn(2+) concentrations with exogenous ZnCl(2) reduced SD propagation rates. Selective chelation of endogenous Zn(2+) (using TPEN or CaEDTA) increased SD propagation rates, and these effects appeared due to chelation of Zn(2+) derived from synaptic vesicles. Thus, in tissues where synaptic Zn(2+) release was absent [knockout (KO) of vesicular Zn(2+) transporter ZnT-3], SD propagation rates were increased, and no additional increase was observed following chelation of endogenous Zn(2+) in these tissues. The role of synaptic Zn(2+) was then examined on CSD in vivo. ZnT-3 KO animals had higher susceptibility to CSD than wild-type controls as evidenced by significantly higher propagation rates and frequencies. Studies of candidate mechanisms excluded changes in neuronal excitability, presynaptic release, and GABA receptors but left open a possible contribution of N-methyl-d-aspartate (NMDA) receptor inhibition. These results suggest the extracellular accumulation of synaptically released Zn(2+) can serve as an intrinsic inhibitor to limit SD events. The inhibitory action of extracellular Zn(2+) on SD may counteract to some extent the neurotoxic effects of intracellular Zn(2+) accumulation in acute brain injury models.


Asunto(s)
Depresión de Propagación Cortical/fisiología , Zinc/farmacología , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Proteínas de Transporte de Catión , Quelantes/farmacología , Depresión de Propagación Cortical/efectos de los fármacos , Ácido Edético/farmacología , Etilenodiaminas/farmacología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/efectos de los fármacos , Neuroglía/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Lóbulo Parietal/efectos de los fármacos , Lóbulo Parietal/fisiología , Cloruro de Potasio/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Zinc/análisis
11.
Eur J Neurosci ; 35(3): 423-35, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22276961

RESUMEN

Recent evidence supports an emerging role of ß-nicotinamide adenine dinucleotide (ß-NAD(+) ) as a novel neurotransmitter and neuromodulator in the peripheral nervous system -ß-NAD(+) is released in nerve-smooth muscle preparations and adrenal chromaffin cells in a manner characteristic of a neurotransmitter. It is currently unclear whether this holds true for the CNS. Using a small-chamber superfusion assay and high-sensitivity high-pressure liquid chromatography techniques, we demonstrate that high-K(+) stimulation of rat forebrain synaptosomes evokes overflow of ß-NAD(+) , adenosine 5'-triphosphate, and their metabolites adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate, adenosine, ADP-ribose (ADPR) and cyclic ADPR. The high-K(+) -evoked overflow of ß-NAD(+) is attenuated by cleavage of SNAP-25 with botulinum neurotoxin A, by inhibition of N-type voltage-dependent Ca(2+) channels with ω-conotoxin GVIA, and by inhibition of the proton gradient of synaptic vesicles with bafilomycin A1, suggesting that ß-NAD(+) is likely released via vesicle exocytosis. Western analysis demonstrates that CD38, a multifunctional protein that metabolizes ß-NAD(+) , is present on synaptosomal membranes and in the cytosol. Intact synaptosomes degrade ß-NAD(+) . 1,N (6) -etheno-NAD, a fluorescent analog of ß-NAD(+) , is taken by synaptosomes and this uptake is attenuated by authentic ß-NAD(+) , but not by the connexin 43 inhibitor Gap 27. In cortical neurons local applications of ß-NAD(+) cause rapid Ca(2+) transients, likely due to influx of extracellular Ca(2+) . Therefore, rat brain synaptosomes can actively release, degrade and uptake ß-NAD(+) , and ß-NAD(+) can stimulate postsynaptic neurons, all criteria needed for a substance to be considered a candidate neurotransmitter in the brain.


Asunto(s)
Encéfalo/metabolismo , NAD/análogos & derivados , NAD/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/citología , Calcio/metabolismo , Células Cultivadas , Femenino , Masculino , Neuronas/citología , Neurotransmisores/metabolismo , Embarazo , Purinas/química , Purinas/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Sinaptosomas/metabolismo
12.
eNeuro ; 9(5)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36192157

RESUMEN

The Emx1-IRES-Cre transgenic mouse is commonly used to direct genetic recombination in forebrain excitatory neurons. However, the original study reported that Emx1-Cre is also expressed embryonically in peripheral autonomic ganglia, which could potentially affect the interpretation of targeted circuitry contributing to systemic phenotypes. Here, we report that Emx1-Cre is expressed in the afferent vagus nerve system involved in autonomic cardiorespiratory regulatory pathways. Our imaging studies revealed expression of Emx1-Cre driven tdtomato fluorescence in the afferent vagus nerve innervating the dorsal medulla of brainstem, cell bodies in the nodose ganglion, and their potential target structures at the carotid bifurcation such as the carotid sinus and the superior cervical ganglion (SCG). Photostimulation of the afferent terminals in the nucleus tractus solitarius (NTS) in vitro using Emx1-Cre driven ChR2 reliably evoked EPSCs in the postsynaptic neurons with electrophysiological characteristics consistent with the vagus afferent nerves. In addition, optogenetic stimulation targeting the Emx1-Cre expressing structures identified in this study, such as vagus nerve, carotid bifurcation, and the dorsal medulla surface transiently depressed cardiorespiratory rate in urethane anesthetized mice in vivo Together, our study demonstrates that Emx1-IRES-Cre is expressed in the key peripheral autonomic nerve system and can modulate cardiorespiratory function independently of forebrain expression. These results raise caution when interpreting systemic phenotypes of Emx1-IRES-Cre conditional recombinant mice, and also suggest the utility of this line to investigate modulators of the afferent vagal system.


Asunto(s)
Ganglio Nudoso , Núcleo Solitario , Animales , Ganglios Autónomos , Integrasas , Ratones , Ganglio Nudoso/metabolismo , Uretano , Nervio Vago/metabolismo
13.
J Clin Invest ; 130(5): 2286-2300, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32250339

RESUMEN

Seizures often herald the clinical appearance of gliomas or appear at later stages. Dissecting their precise evolution and cellular pathogenesis in brain malignancies could inform the development of staged therapies for these highly pharmaco-resistant epilepsies. Studies in immunodeficient xenograft models have identified local interneuron loss and excess glial glutamate release as chief contributors to network disinhibition, but how hyperexcitability in the peritumoral microenvironment evolves in an immunocompetent brain is unclear. We generated gliomas in WT mice via in utero deletion of key tumor suppressor genes and serially monitored cortical epileptogenesis during tumor infiltration with in vivo electrophysiology and GCAMP7 calcium imaging, revealing a reproducible progression from hyperexcitability to convulsive seizures. Long before seizures, coincident with loss of inhibitory cells and their protective scaffolding, gain of glial glutamate antiporter xCT expression, and reactive astrocytosis, we detected local Iba1+ microglial inflammation that intensified and later extended far beyond tumor boundaries. Hitherto unrecognized episodes of cortical spreading depolarization that arose frequently from the peritumoral region may provide a mechanism for transient neurological deficits. Early blockade of glial xCT activity inhibited later seizures, and genomic reduction of host brain excitability by deleting MapT suppressed molecular markers of epileptogenesis and seizures. Our studies confirmed xenograft tumor-driven pathobiology and revealed early and late components of tumor-related epileptogenesis in a genetically tractable, immunocompetent mouse model of glioma, allowing the complex dissection of tumor versus host pathogenic seizure mechanisms.


Asunto(s)
Neoplasias Encefálicas , Encéfalo , Sistemas CRISPR-Cas , Glioblastoma , Neoplasias Experimentales , Convulsiones , Transmisión Sináptica , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/fisiopatología , Eliminación de Gen , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/fisiopatología , Ratones , Ratones Noqueados , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Experimentales/fisiopatología , Convulsiones/genética , Convulsiones/metabolismo , Convulsiones/patología , Convulsiones/fisiopatología
14.
Mol Pharmacol ; 74(3): 823-33, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18556457

RESUMEN

Cadmium is a nonessential toxic metal in mammals. Its toxicity is mainly caused by interactions with cellular proteins that result in protein dysfunction and then disturb normal cellular functions. Glutathione (GSH) has been reported to play a role in cadmium resistance by serving as a cofactor for multidrug resistance protein 1/GS-X pump-mediated cadmium elimination. To further investigate the role of GSH in cadmium toxicity, we carried out a comparative study using small-cell lung cancer-derived cell lines, SR3A, and those that were stably transfected with glutamate cysteine ligase catalytic subunit (GCLC), a rate-limiting enzyme in GSH biosynthesis. These GCLC stably transfected cell lines produced higher levels of GSH and were more resistant to cadmium toxicity than the parental cell line was. The rates of cadmium uptake were reduced in these GCLC-transfected cell lines, which were associated with down-regulation of the cadmium transporter ZIP8/SLC39A8. Further analyses demonstrated that Sp1 binding site at the proximal promoter region of ZIP8 was sensitive to the GSH level and that the expression level of transcription factor Sp1 was reduced by increased GSH levels. We also demonstrated that low concentrations of cadmium exposure down-regulated ZIP8 expression with concomitant reduction of Sp1 expression. Taken together, these results demonstrate the importance of Sp1 in the regulation of ZIP8 expression. More important, our results reveal a new mechanism by which elevated GSH levels confer cadmium resistance by down-regulation of ZIP8 expression through the suppression of Sp1.


Asunto(s)
Cadmio/metabolismo , Proteínas de Transporte de Catión/genética , Regulación hacia Abajo/genética , Glutatión/metabolismo , Factor de Transcripción Sp1/metabolismo , Secuencia de Bases , Cadmio/toxicidad , Proteínas de Transporte de Catión/metabolismo , Línea Celular Tumoral , ADN de Neoplasias/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutamato-Cisteína Ligasa/metabolismo , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción Sp1/genética , Transfección
15.
Mol Pharmacol ; 74(3): 705-13, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18483225

RESUMEN

Copper is an essential metal nutrient, yet copper overload is toxic. Here, we report that human copper transporter (hCtr) 1 plays an important role in the maintenance of copper homeostasis by demonstrating that expression of hCtr1 mRNA was up-regulated under copper-depleted conditions and down-regulated under copper-replete conditions. Overexpression of full-length hCtr1 by transfection with a recombinant hCtr1 cDNA clone reduced endogenous hCtr1 mRNA levels, whereas overexpression of N terminus-deleted hCtr1 did not change endogenous hCtr1 mRNA levels, suggesting that increased functional hCtr1 transporter, which leads to increased intracellular copper content, down-regulates the endogenous hCtr1 mRNA. A luciferase assay using reporter constructs containing the hCtr1 promoter sequences revealed that three Sp1 binding sites are involved in the basal and copper concentration-dependent regulation of hCtr1 expression. Modulation of Sp1 levels affected the expression of hCtr1. We further demonstrated that the zinc-finger domain of Sp1 functions as a sensor of copper that regulates hCtr1 up and down in response to copper concentration variations. Our results demonstrate that mammalian copper homeostasis is maintained at the hCtr1 mRNA level, which is regulated by the Sp1 transcription factor.


Asunto(s)
Cobre/metabolismo , Homeostasis , Factor de Transcripción Sp1/metabolismo , Secuencia de Bases , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Línea Celular , Transportador de Cobre 1 , Regulación Neoplásica de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Dedos de Zinc
16.
Steroids ; 71(10): 849-56, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16842832

RESUMEN

vitamin D is 25-hydroxylated in the liver, before being activated by 1alpha-hydroxylation in the kidney. Recently, the rat cytochrome P450 2J3 (CYP2J3) has been identified as a principal vitamin D 25-hydroxylase in the rat [Yamasaki T, Izumi S, Ide H, Ohyama Y. Identification of a novel rat microsomal vitamin D3 25-hydroxylase. J Biol Chem 2004;279(22):22848-56]. In this study, we examine whether human CYP2J2 that exhibits 73% amino acid homology to rat CYP2J3 has similar catalytic properties. Recombinant human CYP2J2 was overexpressed in Escherichia coli, purified, and assayed for vitamin D 25-hydroxylation activity. We found significant 25-hydroxylation activity toward vitamin D3 (turnover number, 0.087 min(-1)), vitamin D2 (0.16 min(-1)), and 1alpha-hydroxyvitamin D3 (2.2 min(-1)). Interestingly, human CYP2J2 hydroxylated vitamin D2, an exogenous vitamin D, at a higher rate than it did vitamin D3, an endogenous vitamin D, whereas, rat CYP2J3 hydroxylated vitamin D3 (1.4 min(-1)) more efficiently than vitamin D2 (0.86 min(-1)). Our study demonstrated that human CYP2J2 exhibits 25-hydroxylation activity as well as rat CYP2J3, although the activity of human CYP2J2 is weaker than rat CYP2J3. CYP2J2 and CYP2J3 exhibit distinct preferences toward vitamin D3 and D2.


Asunto(s)
Colestanotriol 26-Monooxigenasa/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Animales , Secuencia de Bases , Colestanotriol 26-Monooxigenasa/química , Sistema Enzimático del Citocromo P-450/química , Cartilla de ADN , Humanos , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
J Inorg Biochem ; 161: 37-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27172866

RESUMEN

The human high-affinity copper transporter 1 (hCtr1) transports both Cu(I) and cisplatin (cDDP). Because Cu deficiency is lethal yet Cu overload is poisonous, hCtr1 expression is transcriptionally upregulated in response to Cu deficiency but is downregulated under Cu replete conditions in controlling Cu homeostasis. The up- and down-regulation of hCtr1 is regulated by Specific protein 1 (Sp1), which itself is also correspondingly regulated under these Cu conditions. hCtr1 expression is also upregulated by cDDP via upregulation of Sp1. The underlying mechanisms of these regulations are unknown. Using gel-electrophoretic mobility shift assays, we demonstrated here that Sp1-DNA binding affinity is reduced under Cu replete conditions but increased under reduced Cu conditions. Similarly, Sp1-DNA binding affinity is increased by cDDP treatment. This in vitro system demonstrated, for the first time, that regulation of Sp1/hCtr1 expression by these agents is modulated by the stability of Sp1-DNA binding, the first step in the Sp1-mediated transcriptional regulation process.


Asunto(s)
Cisplatino/química , Cobre/química , ADN/química , Factor de Transcripción Sp1/química , Transporte Biológico Activo , Proteínas de Transporte de Catión/biosíntesis , Transportador de Cobre 1 , ADN/metabolismo , Humanos , Oxidación-Reducción , Factor de Transcripción Sp1/metabolismo
18.
Sci Transl Med ; 7(282): 282ra46, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25855492

RESUMEN

Cardiorespiratory collapse after a seizure is the leading cause of sudden unexpected death in epilepsy (SUDEP) in young persons, but why only certain individuals are at risk is unknown. To identify a mechanism for this lethal cardiorespiratory failure, we examined whether genes linked to increased SUDEP risk lower the threshold for spreading depolarization (SD), a self-propagating depolarizing wave that silences neuronal networks. Mice carrying mutations in Kv1.1 potassium channels (-/-) and Scn1a sodium ion channels (+/R1407X) phenocopy many aspects of human SUDEP. In mutant, but not wild-type mice, seizures initiated by topical application of 4-aminopyridine to the cortex led to a slow, negative DC potential shift recorded in the dorsal medulla, a brainstem region that controls cardiorespiratory pacemaking. This irreversible event slowly depolarized cells and inactivated synaptic activity, producing cardiorespiratory arrest. Local initiation of SD in this region by potassium chloride microinjection also elicited electroencephalographic suppression, apnea, bradycardia, and asystole, similar to the events seen in monitored human SUDEP. In vitro study of brainstem slices confirmed that mutant mice had a lower threshold for SD elicited by metabolic substrate depletion and that immature mice were at greater risk than adults. Deletion of the gene encoding tau, which prolongs life in these mutants, also restored the normal SD threshold in Kv1.1-mutant mouse brainstem. Thus, brainstem SD may be a critical threshold event linking seizures and SUDEP.


Asunto(s)
Potenciales de Acción/fisiología , Tronco Encefálico/fisiopatología , Muerte Súbita , Paro Cardíaco/fisiopatología , Envejecimiento/patología , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Paro Cardíaco/complicaciones , Canal de Potasio Kv.1.1/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Convulsiones/complicaciones , Convulsiones/fisiopatología , Proteínas tau/metabolismo
19.
Expert Opin Ther Targets ; 19(10): 1307-17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26004625

RESUMEN

INTRODUCTION: Platinum (Pt)-based antitumor agents remain important chemotherapeutic agents for treating many human malignancies. Elevated expression of the human high-affinity copper transporter 1 (hCtr1), resulting in enhanced Pt drug transport into cells, has been shown to be associated with improved treatment efficacy. Thus, targeting hCtr1 upregulation is an attractive strategy for improving the treatment efficacy of Pt-based cancer chemotherapy. AREA COVERED: Regulation of hCtr1 expression by cellular copper homeostasis is discussed. Association of elevated hCtr1 expression with intrinsic sensitivity of ovarian cancer to Pt drugs is presented. Mechanism of copper-lowering agents in enhancing hCtr1-mediated cis-diamminedichloroplatinum (II) (cisplatin, cDDP) transport is reviewed. Applications of copper chelation strategy in overcoming cDDP resistance through enhanced hCtr1 expression are evaluated. EXPERT OPINION: While both transcriptional and post-translational mechanisms of hCtr1 regulation by cellular copper bioavailability have been proposed, detailed molecular insights into hCtr1 regulation by copper homeostasis remain needed. Recent clinical study using a copper-lowering agent in enhancing hCtr1-mediated drug transport has achieved incremental improvement in overcoming Pt drug resistance. Further improvements in identifying predictive measures in the subpopulation of patients that can benefit from the treatment are needed.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Proteínas de Transporte de Catión/genética , Neoplasias/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Transporte Biológico , Quelantes/farmacología , Cobre/metabolismo , Transportador de Cobre 1 , Resistencia a Antineoplásicos , Humanos , Neoplasias/patología , Compuestos de Platino/administración & dosificación , Regulación hacia Arriba/efectos de los fármacos
20.
PLoS One ; 9(10): e110849, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25338191

RESUMEN

Spreading depolarization (SD) is a slowly propagating wave of near complete depolarizations of neurons and glia. Previous studies have reported large GABA releases during SD, but there is limited understanding of how GABA release and receptor activation are regulated and influence the propagating SD wavefront, as well as an excitatory phase immediately following the passage of SD. The present study characterized GABA-A type receptor (GABAAR) currents during SD generated by KCl microinjection in acute hippocampal slices from adult mice. Spontaneous GABAAR-mediated currents (sIPSCs) were initially enhanced, and were followed by a large outward current at the wavefront. sIPSC were then transiently supressed during the late SD phase, resulting in a significant reduction of the sIPSC/sEPSC ratio. The large outward current generated during SD was eliminated by the GABAAR antagonist gabazine, but the channel potentiator/agonist propofol failed to potentiate the current, likely because of a ceiling effect. Extracellular Cl- decreases recorded during SD were reduced by the antagonist but were not increased by the potentiator. Together with effects of GABAAR modulators on SD propagation rate, these results demonstrate a significant inhibitory role of the initial GABAAR activation and suggest that intracellular Cl- loading is insufficient to generate excitatory GABAAR responses during SD propagation. These results provide a mechanistic explanation for facilitating effects of GABAAR antagonists, and the lack of inhibitory effect of GABAAR potentiators on SD propagation. In addition, selective suppression of GABA transmission in the late SD period and the lack of effect of GABAA modulators on the duration of SD suggests that GABA modulation may not be effective approach to protect neurons during the vulnerable phase of SD.


Asunto(s)
Potenciales de la Membrana , Neuronas/fisiología , Receptores de GABA-A/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Propofol/farmacología , Piridazinas/farmacología , Receptores de GABA-A/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA