Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(9): e1012537, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39259747

RESUMEN

HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid. Recent studies have shown that HIV-1 cores enter the nucleus prior to capsid disassembly. Interactions of the viral capsid with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Adaptation of two of the mutant viruses in cell culture resulted in additional substitutions that restored elasticity and rescued infectivity and nuclear entry. We also show that capsid-targeting compound PF74 and the antiviral drug Lenacapavir reduce core elasticity and block HIV-1 nuclear entry at concentrations that preserve interactions between the viral core and the nuclear envelope. Our results indicate that elasticity is a fundamental property of the HIV-1 core that enables nuclear entry, thereby facilitating infection. These results provide new insights into the role of the capsid in HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.


Asunto(s)
Elasticidad , Infecciones por VIH , VIH-1 , VIH-1/fisiología , Humanos , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Internalización del Virus , Cápside/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virología , Simulación de Dinámica Molecular , Microscopía de Fuerza Atómica , Poro Nuclear/metabolismo , Indoles , Fenilalanina/análogos & derivados
2.
PLoS Pathog ; 20(9): e1011810, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39226318

RESUMEN

The viral capsid performs critical functions during HIV-1 infection and is a validated target for antiviral therapy. Previous studies have established that the proper structure and stability of the capsid are required for efficient HIV-1 reverse transcription in target cells. Moreover, it has recently been demonstrated that permeabilized virions and purified HIV-1 cores undergo efficient reverse transcription in vitro when the capsid is stabilized by addition of the host cell metabolite inositol hexakisphosphate (IP6). However, the molecular mechanism by which the capsid promotes reverse transcription is undefined. Here we show that wild type HIV-1 virions can undergo efficient reverse transcription in vitro in the absence of a membrane-permeabilizing agent. This activity, originally termed "natural endogenous reverse transcription" (NERT), depends on expression of the viral envelope glycoprotein during virus assembly and its incorporation into virions. Truncation of the gp41 cytoplasmic tail markedly reduced NERT activity, suggesting that gp41 licenses the entry of nucleotides into virions. By contrast to reverse transcription in permeabilized virions, NERT required neither the addition of IP6 nor a mature capsid, indicating that an intact viral membrane can substitute for the function of the viral capsid during reverse transcription in vitro. Collectively, these results demonstrate that the viral capsid functions as a nanoscale container for reverse transcription during HIV-1 infection.


Asunto(s)
Cápside , VIH-1 , Transcripción Reversa , VIH-1/fisiología , VIH-1/metabolismo , Cápside/metabolismo , Humanos , Virión/metabolismo , Proteína gp41 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/genética , Ensamble de Virus/fisiología , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Ácido Fítico/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(13): e2202815120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943880

RESUMEN

Increasing evidence has suggested that the HIV-1 capsid enters the nucleus in a largely assembled, intact form. However, not much is known about how the cone-shaped capsid interacts with the nucleoporins (NUPs) in the nuclear pore for crossing the nuclear pore complex. Here, we elucidate how NUP153 binds HIV-1 capsid by engaging the assembled capsid protein (CA) lattice. A bipartite motif containing both canonical and noncanonical interaction modules was identified at the C-terminal tail region of NUP153. The canonical cargo-targeting phenylalanine-glycine (FG) motif engaged the CA hexamer. By contrast, a previously unidentified triple-arginine (RRR) motif in NUP153 targeted HIV-1 capsid at the CA tri-hexamer interface in the capsid. HIV-1 infection studies indicated that both FG- and RRR-motifs were important for the nuclear import of HIV-1 cores. Moreover, the presence of NUP153 stabilized tubular CA assemblies in vitro. Our results provide molecular-level mechanistic evidence that NUP153 contributes to the entry of the intact capsid into the nucleus.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Proteínas de la Cápside/metabolismo , Cápside/metabolismo , VIH-1/metabolismo , Transporte Activo de Núcleo Celular , Proteínas de Complejo Poro Nuclear/metabolismo , Infecciones por VIH/metabolismo , Poro Nuclear/metabolismo
4.
J Virol ; : e0094724, 2024 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-39480090

RESUMEN

Cyclophilin A (CypA) binds to the HIV-1 capsid to facilitate reverse transcription and nuclear entry and counter the antiviral activity of TRIM5α. Interestingly, recent studies suggest that the capsid enters the nucleus of an infected cell and uncoats prior to integration. We have previously reported that the capsid protein regulates HIV-1 integration. Therefore, we probed whether CypA-capsid interaction also regulates this post-nuclear entry step. First, we challenged CypA-expressing (CypA+/+) and CypA-depleted (CypA-/-) cells with HIV-1 and quantified the levels of provirus. CypA-depletion significantly reduced integration, an effect that was independent of CypA's effect on reverse transcription, nuclear entry, and the presence or absence of TRIM5α. In addition, cyclosporin A, an inhibitor that disrupts CypA-capsid binding, inhibited proviral integration in CypA+/+ cells but not in CypA-/- cells. HIV-1 capsid mutants (G89V and P90A) deficient in CypA binding were also blocked at the integration step in CypA+/+ cells but not in CypA-/- cells. Then, to understand the mechanism, we assessed the integration activity of the HIV-1 preintegration complexes (PICs) extracted from acutely infected cells. PICs from CypA-/- cells retained lower integration activity in vitro compared to those from CypA+/+ cells. PICs from cells depleted of both CypA and TRIM5α also had lower activity, suggesting that CypA's effect on PIC was independent of TRIM5α. Finally, CypA protein specifically stimulated PIC activity, as this effect was significantly blocked by CsA. Collectively, these results provide strong evidence that CypA directly promotes HIV-1 integration, a previously unknown role of this host factor in the nucleus of an infected cell. IMPORTANCE: Interaction between the HIV-1 capsid and host cellular factors is essential for infection. However, the molecular details and functional consequences of viral-host factor interactions during HIV-1 infection are not fully understood. Over 30 years ago, Cyclophilin A (CypA) was identified as the first host protein to bind to the HIV-1 capsid. Now it is established that CypA-capsid interaction promotes reverse transcription and nuclear entry of HIV-1. In addition, CypA blocks TRIM5α-mediated restriction of HIV-1. In this report, we show that CypA promotes the post-nuclear entry step of HIV-1 integration by binding to the viral capsid. Notably, we show that CypA stimulates the viral DNA integration activity of the HIV-1 preintegration complex. Collectively, our studies identify a novel role of CypA during the early steps of HIV-1 infection. This new knowledge is important because recent reports suggest that an operationally intact HIV-1 capsid enters the nucleus of an infected cell.

5.
PLoS Pathog ; 19(6): e1011423, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37267431

RESUMEN

The mature HIV-1 capsid is stabilized by host and viral determinants. The capsid protein CA binds to the cellular metabolites inositol hexakisphosphate (IP6) and its precursor inositol (1, 3, 4, 5, 6) pentakisphosphate (IP5) to stabilize the mature capsid. In target cells, capsid destabilization by the antiviral compounds lenacapavir and PF74 reveals a HIV-1 infectivity defect due to IP5/IP6 (IP5/6) depletion. To test whether intrinsic HIV-1 capsid stability and/or host factor binding determines HIV-1 insensitivity to IP5/6 depletion, a panel of CA mutants was assayed for infection of IP5/6-depleted T cells and wildtype cells. Four CA mutants with unstable capsids exhibited dependence on host IP5/6 for infection and reverse transcription (RTN). Adaptation of one such mutant, Q219A, by spread in culture resulted in Vpu truncation and a capsid three-fold interface mutation, T200I. T200I increased intrinsic capsid stability as determined by in vitro uncoating of purified cores and partially reversed the IP5/6-dependence in target cells for each of the four CA mutants. T200I further rescued the changes to lenacapavir sensitivity associated with the parental mutation. The premature dissolution of the capsid caused by the IP5/6-dependent mutations imparted a unique defect in integration targeting that was rescued by T200I. Collectively, these results demonstrate that T200I restored other capsid functions after RTN for the panel of mutants. Thus, the hyperstable T200I mutation stabilized the instability defects imparted by the parental IP5/6-dependent CA mutation. The contribution of Vpu truncation to mutant adaptation was linked to BST-2 antagonization, suggesting that cell-to-cell transfer promoted replication of the mutants. We conclude that interactions at the three-fold interface are adaptable, key mediators of capsid stability in target cells and are able to antagonize even severe capsid instability to promote infection.


Asunto(s)
Fármacos Anti-VIH , Seropositividad para VIH , VIH-1 , Humanos , Cápside/metabolismo , VIH-1/genética , VIH-1/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Fosfatos de Inositol/metabolismo , Fármacos Anti-VIH/farmacología
6.
PLoS Pathog ; 18(8): e1010754, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35951676

RESUMEN

In infectious HIV-1 particles, the capsid protein (CA) forms a cone-shaped shell called the capsid, which encases the viral ribonucleoprotein complex (vRNP). Following cellular entry, the capsid is disassembled through a poorly understood process referred to as uncoating, which is required to release the reverse transcribed HIV-1 genome for integration into host chromatin. Whereas single virus imaging using indirect CA labeling techniques suggested uncoating to occur in the cytoplasm or at the nuclear pore, a recent study using eGFP-tagged CA reported uncoating in the nucleus. To delineate the HIV-1 uncoating site, we investigated the mechanism of eGFP-tagged CA incorporation into capsids and the utility of this fluorescent marker for visualizing HIV-1 uncoating. We find that virion incorporated eGFP-tagged CA is effectively excluded from the capsid shell, and that a subset of the tagged CA is vRNP associated. These results thus imply that eGFP-tagged CA is not a direct marker for capsid uncoating. We further show that native CA co-immunoprecipitates with vRNP components, providing a basis for retention of eGFP-tagged and untagged CA by sub-viral complexes in the nucleus. Moreover, we find that functional viral replication complexes become accessible to integrase-interacting host factors at the nuclear pore, leading to inhibition of infection and demonstrating capsid permeabilization prior to nuclear import. Finally, we find that HIV-1 cores containing a mixture of wild-type and mutant CA interact differently with cytoplasmic versus nuclear pools of the CA-binding host cofactor CPSF6. Our results suggest that capsid remodeling (including a loss of capsid integrity) is the predominant pathway for HIV-1 nuclear entry and provide new insights into the mechanism of CA retention in the nucleus via interaction with vRNP components.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Transporte Activo de Núcleo Celular , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , VIH-1/genética , Virión/metabolismo , Replicación Viral , Desencapsidación Viral , Integración Viral
7.
Cell ; 139(4): 780-90, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19914170

RESUMEN

Mature HIV-1 particles contain conical-shaped capsids that enclose the viral RNA genome and perform essential functions in the virus life cycle. Previous structural analysis of two- and three-dimensional arrays of the capsid protein (CA) hexamer revealed three interfaces. Here, we present a cryoEM study of a tubular assembly of CA and a high-resolution NMR structure of the CA C-terminal domain (CTD) dimer. In the solution dimer structure, the monomers exhibit different relative orientations compared to previous X-ray structures. The solution structure fits well into the EM density map, suggesting that the dimer interface is retained in the assembled CA. We also identified a CTD-CTD interface at the local three-fold axis in the cryoEM map and confirmed its functional importance by mutagenesis. In the tubular assembly, CA intermolecular interfaces vary slightly, accommodating the asymmetry present in tubes. This provides the necessary plasticity to allow for controlled virus capsid dis/assembly.


Asunto(s)
Proteínas de la Cápside/química , VIH-1/química , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , VIH-1/metabolismo , Resonancia Magnética Nuclear Biomolecular , ARN Viral/metabolismo , Ensamble de Virus
8.
Healthc Manage Forum ; 37(5): 351-358, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38828882

RESUMEN

In March 2020, as the COVID-19 cases began to rise in Ontario, Canada, the central role of Occupational Health and Safety (OHS) to ensure the well-being of hospital workforce became highly visible. While Ontario's hospitals concentrated efforts to meet each challenging and uncertain wave stressing the system, it was apparent that there is a lack of consistency in best practices and policy response across the healthcare sector. Additionally, the unprecedented pressure on healthcare workforce as they attempted to meet the pandemic's new surging demands resulted in workforce shortages and increased levels of burnout, making it difficult to engage, support, and retain the staff necessary for delivering highest quality of services. The Toronto Academic Health Science Network (TAHSN), a dynamic consortium of 14 healthcare organizations, established a collaborative to implement an integrated effort and align on structure, processes, and standards that will increase strength and defensibility of TAHSN programs. To foster community building, identify areas of common concern, and co-create practices during and beyond the COVID-19 pandemic, a structured network of 14 OHS directors across the healthcare organizations was established. This article discusses the origin of the TAHSN collaborative, the thriving community vision for partnership, and the case study methodology used to combine capabilities to showcase innovation and excellence in care together.


Asunto(s)
COVID-19 , Salud Laboral , SARS-CoV-2 , Ontario , Humanos , COVID-19/epidemiología , Centros Médicos Académicos , Conducta Cooperativa , Pandemias
9.
PLoS Pathog ; 17(3): e1009389, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33651846

RESUMEN

[This corrects the article DOI: 10.1371/journal.ppat.1009190.].

10.
PLoS Pathog ; 17(1): e1009190, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476323

RESUMEN

Gag polymerization with viral RNA at the plasma membrane initiates HIV-1 assembly. Assembly processes are inefficient in vitro but are stimulated by inositol (1,3,4,5,6) pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) metabolites. Previous studies have shown that depletion of these inositol phosphate species from HEK293T cells reduced HIV-1 particle production but did not alter the infectivity of the resulting progeny virions. Moreover, HIV-1 substitutions bearing Gag/CA mutations ablating IP6 binding are noninfectious with destabilized viral cores. In this study, we analyzed the effects of cellular depletion of IP5 and IP6 on HIV-1 replication in T cells in which we disrupted the genes encoding the kinases required for IP6 generation, IP5 2-kinase (IPPK) and Inositol Polyphosphate Multikinase (IPMK). Knockout (KO) of IPPK from CEM and MT-4 cells depleted cellular IP6 in both T cell lines, and IPMK disruption reduced the levels of both IP5 and IP6. In the KO lines, HIV-1 spread was delayed relative to parental wild-type (WT) cells and was rescued by complementation. Virus release was decreased in all IPPK or IPMK KO lines relative to WT cells. Infected IPMK KO cells exhibited elevated levels of intracellular Gag protein, indicative of impaired particle assembly. IPMK KO compromised virus production to a greater extent than IPPK KO suggesting that IP5 promotes HIV-1 particle assembly in IPPK KO cells. HIV-1 particles released from infected IPPK or IPMK KO cells were less infectious than those from WT cells. These viruses exhibited partially cleaved Gag proteins, decreased virion-associated p24, and higher frequencies of aberrant particles, indicative of a maturation defect. Our data demonstrate that IP6 enhances the quantity and quality of virions produced from T cells, thereby preventing defects in HIV-1 replication.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , VIH-1/fisiología , Fosfatos de Inositol/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/virología , Ensamble de Virus , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Productos del Gen gag/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Células Tumorales Cultivadas , Virión/fisiología
11.
PLoS Biol ; 18(12): e3001015, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33332391

RESUMEN

Reverse transcription, an essential event in the HIV-1 life cycle, requires deoxynucleotide triphosphates (dNTPs) to fuel DNA synthesis, thus requiring penetration of dNTPs into the viral capsid. The central cavity of the capsid protein (CA) hexamer reveals itself as a plausible channel that allows the passage of dNTPs into assembled capsids. Nevertheless, the molecular mechanism of nucleotide import into the capsid remains unknown. Employing all-atom molecular dynamics (MD) simulations, we established that cooperative binding between nucleotides inside a CA hexamer cavity results in energetically favorable conditions for passive translocation of dNTPs into the HIV-1 capsid. Furthermore, binding of the host cell metabolite inositol hexakisphosphate (IP6) enhances dNTP import, while binding of synthesized molecules like benzenehexacarboxylic acid (BHC) inhibits it. The enhancing effect on reverse transcription by IP6 and the consequences of interactions between CA and nucleotides were corroborated using atomic force microscopy, transmission electron microscopy, and virological assays. Collectively, our results provide an atomistic description of the permeability of the HIV-1 capsid to small molecules and reveal a novel mechanism for the involvement of metabolites in HIV-1 capsid stabilization, nucleotide import, and reverse transcription.


Asunto(s)
Cápside/metabolismo , VIH-1/metabolismo , Replicación Viral/fisiología , Cápside/química , Cápside/fisiología , Proteínas de la Cápside/genética , Replicación del ADN/fisiología , ADN Viral/metabolismo , Células HEK293 , VIH-1/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Simulación de Dinámica Molecular , Nucleótidos/metabolismo , Permeabilidad , Ácido Fítico/análisis , Ácido Fítico/metabolismo , Virión/genética , Ensamble de Virus/fisiología , Replicación Viral/genética
12.
Ecol Appl ; 33(2): e2774, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36315164

RESUMEN

Assessing the conditions for persistence of spatially structured populations, especially those that are exploited by humans or threatened by global change, is of critical importance to inform management and conservation efforts. Observations for entire metapopulations are usually incomplete and rarely, if ever, sufficiently long to deduce population persistence from spatial patterns of abundance. Instead, insights based on metapopulation theory are often used for interpreting the demographic trajectories of real populations and for informing management decisions. The classical theoretical tool used to assess conditions for metapopulation persistence is the "invasibility criterion," which characterizes the asymptotic, or long-term, stability of a small colonizing population. Essentially, when the linear operator governing the metapopulation dynamics of an invasion event has a positive eigenvalue, recovery and resistance to extinction (resilience) are implied. The converse, however, is not necessarily the case-an invasion may grow over multiple generations, even when the eigenvalues indicate that extinction will eventually occur, a situation referred to here as "reactive persistence." For the management, restoration, and conservation of real metapopulations subject to continual disturbance, this transient behavior is often more relevant than the asymptotic behavior over long time scales. We develop the theoretical tools for assessing reactive persistence, demonstrating how the conditions for asymptotic and reactive persistence differ in both the patch-occupancy models suited to many terrestrial populations and those where local patch extinctions can be disregarded in the dynamics, often suited to marine species. After presenting the mathematical basis for generalizing the invasibility criterion to include reactive persistence, we illustrate how these concepts and tools can be applied in practice, using as a case study the population ecology and restoration of the seagrass Zostera muelleri (Irmisch ex Ascherson, 1867) in the Port of Gladstone in the Great Barrier Reef World Heritage Area Australia. It is shown how the analysis of the transient dynamics of the Z. muelleri metapopulation can be used to guide restoration efforts. Moreover, it is demonstrated that these reactive persistence concepts provide a more appropriate basis for site prioritization for restoration interventions than traditional stability analysis.


Asunto(s)
Ecología , Zosteraceae , Humanos , Dinámica Poblacional , Densidad de Población , Australia , Ecosistema , Modelos Biológicos
13.
Laterality ; 28(4-6): 239-253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37368942

RESUMEN

Age-related effects on motor asymmetry provide insight into changes in cortical activation during aging. To investigate potential changes in manual performance associated with aging, we conducted the Jamar hand function test and the Purdue Pegboard test on young and older adults. All tests indicated reduced motor asymmetry in the older group. Further analysis suggested that a significant decline in dominant (right) hand function resulted in less asymmetric performance in older adults. The finding is inconsistent with the application of the HAROLD model in the motor domain, which assumes improved performance in the non-dominant hand, leading to a reduction of motor asymmetry in older adults. Based on the manual performance in young and older adults, it is suggested that aging reduces manual asymmetry in both force production and manual dexterity due to the reduced performance of the dominant hand.

14.
J Virol ; 95(24): e0144521, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34613803

RESUMEN

The HIV-1 capsid, composed of the CA protein, is the target of the novel antiretroviral drug lenacapavir (LCV). CA inhibitors block host factor binding and alter capsid stability to prevent nuclear entry and reverse transcription (RTN), respectively. Capsid stability is mediated in vitro by binding to the host cell metabolite inositol hexakisphosphate (IP6). IP6 depletion in target cells has little effect on HIV-1 infection. We hypothesized that capsid-altering concentrations of CA inhibitors might reveal an effect of IP6 depletion on HIV-1 infection in target cells. To test this, we studied the effects of IP6 depletion on inhibition of infection by the CA inhibitors PF74 and LCV. At low doses of either compound that affect HIV-1 nuclear entry, no effect of IP6 depletion on antiviral activity was observed. Increased antiviral activity was observed in IP6-depleted cells at inhibitor concentrations that affect capsid stability, correlating with increased RTN inhibition. Assays of uncoating and endogenous RTN of purified cores in vitro provided additional support. Our results show that inositol phosphates stabilize the HIV-1 capsid in target cells, thereby dampening the antiviral effects of capsid-targeting antiviral compounds. We propose that targeting of the IP6-binding site in conjunction with CA inhibitors will lead to robust antiretroviral therapy (ART). IMPORTANCE HIV-1 infection and subsequent depletion of CD4+ T cells result in AIDS. Antiretroviral therapy treatment of infected individuals prevents progression to AIDS. The HIV-1 capsid has recently become an ART target. Capsid inhibitors block HIV-1 infection at multiple steps, offering advantages over current ART. The cellular metabolite inositol hexakisphosphate (IP6) binds the HIV-1 capsid, stabilizing it in vitro. However, the function of this interaction in target cells is unclear. Our results imply that IP6 stabilizes the incoming HIV-1 capsid in cells, thus limiting the antiviral efficiency of capsid-destabilizing antivirals. We present a model of capsid inhibitor function and propose that targeting of the IP6-binding site in conjunction with capsid inhibitors currently in development will lead to more robust ART.


Asunto(s)
Fármacos Anti-VIH/farmacología , Cápside/efectos de los fármacos , VIH-1/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Fosfatos de Inositol/metabolismo , Ácido Fítico/metabolismo , Proteínas de la Cápside , Línea Celular , Humanos
15.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33692202

RESUMEN

The HIV core consists of the viral genome and associated proteins encased by a cone-shaped protein shell termed the capsid. Successful infection requires reverse transcription of the viral genome and disassembly of the capsid shell within a cell in a process known as uncoating. The integrity of the viral capsid is critical for reverse transcription, yet the viral capsid must be breached to release the nascent viral DNA prior to integration. We employed atomic force microscopy to study the stiffness changes in HIV-1 cores during reverse transcription in vitro in reactions containing the capsid-stabilizing host metabolite IP6 Cores exhibited a series of stiffness spikes, with up to three spikes typically occurring between 10-30, 40-80, and 120-160 minutes after initiation of reverse transcription. Addition of the reverse transcriptase (RT) inhibitor efavirenz eliminated the appearance of these spikes and the subsequent disassembly of the capsid, thus establishing that both result from reverse transcription. Using timed addition of efavirenz, and analysis of an RNAseH-defective RT mutant, we established that the first stiffness spike requires minus-strand strong stop DNA synthesis, with subsequent spikes requiring later stages of reverse transcription. Additional rapid AFM imaging experiments revealed repeated morphological changes in cores that were temporally correlated with the observed stiffness spikes. Our study reveals discrete mechanical changes in the viral core that are likely related to specific stages of reverse transcription. These reverse-transcription-induced changes in the capsid progressively remodel the viral core to prime it for temporally accurate uncoating in target cells.ImportanceFor successful infection, the HIV-1 genome, which is enclosed inside a capsid shell, must be reverse transcribed into double-stranded DNA and released from the capsid (in a process known as uncoating) before it can be integrated into the target cell genome. The mechanism of HIV-1 uncoating is a pivotal question of long standing. Using atomic force microscopy to analyze individual HIV-1 cores during reverse transcription, we observe a reproducible pattern of stiffness spikes. These spikes were shown to be associated with distinct stages of the reverse transcription reaction. Our findings suggest that these reverse-transcription-induced alterations gradually prepared the core for uncoating at the right time and location in target cells.

16.
Retrovirology ; 18(1): 29, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563203

RESUMEN

The viral capsid plays a key role in HIV-1 reverse transcription. Recent studies have demonstrated that the small molecule IP6 dramatically enhances reverse transcription in vitro by stabilizing the viral capsid. Reverse transcription results in marked changes in the biophysical properties of the capsid, ultimately resulting in its breakage and disassembly. Here we review the research leading to these advances and describe hypotheses for capsid-dependent HIV-1 reverse transcription and a model for reverse transcription-primed HIV-1 uncoating.


Asunto(s)
Cápside/metabolismo , VIH-1/genética , Transcripción Reversa , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Humanos
17.
J Virol ; 94(20)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32796070

RESUMEN

SERINC5 is a 10-transmembrane-domain cellular protein that is incorporated into budding HIV-1 particles and reduces HIV-1 infectivity by inhibiting virus-cell fusion. HIV-1 susceptibility to SERINC5 is determined by sequences in the viral Env glycoprotein gp120, and the antiviral effect of SERINC5 is counteracted by the viral accessory protein Nef. While the precise mechanism by which SERINC5 inhibits HIV-1 infectivity is unclear, previous studies have suggested that SERINC5 affects Env conformation. To define the effects of SERINC5 on Env conformation, we quantified the binding of HIV-1 particles to immobilized Env-specific monoclonal antibodies. We observed that SERINC5 reduced the binding of HIV-1 particles bearing a SERINC5-susceptible Env to antibodies that recognize the V3 loop, a soluble CD4 (sCD4)-induced epitope, and an N-linked glycan. In contrast, SERINC5 did not alter the capture of HIV-1 particles bearing the SERINC5-resistant Env protein. Moreover, the effect of SERINC5 on antibody-dependent virus capture was abrogated by Nef expression. Our results indicate that SERINC5 inhibits HIV-1 infectivity by altering the conformation of gp120 on virions and/or physical masking of specific HIV-1 Env epitopes.IMPORTANCE SERINC5 is a host cell protein that inhibits the infectivity of HIV-1 by a novel and poorly understood mechanism. Here, we provide evidence that the SERINC5 protein alters the conformation of the HIV-1 Env proteins and that this action is correlated with SERINC5's ability to inhibit HIV-1 infectivity. Defining the specific effects of SERINC5 on the HIV-1 glycoprotein conformation may be useful for designing new antiviral strategies targeting Env.


Asunto(s)
Antígenos CD4/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Proteínas de la Membrana/metabolismo , Antígenos CD4/genética , Células HEK293 , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/genética , VIH-1/genética , Humanos , Proteínas de la Membrana/genética , Estructura Secundaria de Proteína
18.
Am Nat ; 196(2): 145-156, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32673099

RESUMEN

The often complex spatial patterns of propagule dispersal across a metapopulation present a challenge for species management, motivating efforts to represent the connectivity in simpler but meaningful ways. The reduction of complexity may be achieved by partitioning the metapopulation into groups of highly connected patches called "subpopulations." To have relevance for management, these subunits must be defined from ecological or evolutionary principles. The probabilities of dispersal-mediated propagule interchange between sites, commonly organized into a connectivity matrix, entail a timescale that is usually ignored in subpopulation analyses, limiting their utility and possibly leading to misinterpretation and wrong management decisions. Recognition of the essentially dynamical role played by metapopulation connectivity naturally leads to the incorporation of the generational timescale into the partitioning analysis. An algorithm is proposed to determine the subpopulations-both their cardinality and their composition-as a function of the generational timescale and of a limiting probability of connection, illustrated with a novel empirical estimate of mesopelagic connectivity. The proposed framework allows the unambiguous determination of the timescales corresponding to dispersal barriers and the identification of effective ecological units across the spectrum of management-relevant time horizons.


Asunto(s)
Organismos Acuáticos , Ecosistema , Dinámica Poblacional , Algoritmos , Océanos y Mares , Factores de Tiempo
19.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567984

RESUMEN

The HIV-1 capsid protein (CA) facilitates reverse transcription and nuclear entry of the virus. However, CA's role in post-nuclear entry steps remains speculative. We describe a direct link between CA and integration by employing the capsid inhibitor PF74 as a probe coupled with the biochemical analysis of HIV-1 preintegration complexes (PICs) isolated from acutely infected cells. At a low micromolar concentration, PF74 potently inhibited HIV-1 infection without affecting reverse transcription. Surprisingly, PF74 markedly reduced proviral integration owing to inhibition of nuclear entry and/or integration. However, a 2-fold reduction in nuclear entry by PF74 did not quantitatively correlate with the level of antiviral activity. Titration of PF74 against the integrase inhibitor raltegravir showed an additive antiviral effect that is dependent on a block at the post-nuclear entry step. PF74's inhibitory effect was not due to the formation of defective viral DNA ends or a delay in integration, suggesting that the compound inhibits PIC-associated integration activity. Unexpectedly, PICs recovered from cells infected in the presence of PF74 exhibited elevated integration activity. PF74's effect on PIC activity is CA specific since the compound did not increase the integration activity of PICs of a PF74-resistant HIV-1 CA mutant. Sucrose gradient-based fractionation studies revealed that PICs assembled in the presence of PF74 contained lower levels of CA, suggesting a negative association between CA and PIC-associated integration activity. Finally, the addition of a CA-specific antibody or PF74 inhibited PIC-associated integration activity. Collectively, our results demonstrate that PF74's targeting of PIC-associated CA results in impaired HIV-1 integration.IMPORTANCE Antiretroviral therapy (ART) that uses various combinations of small molecule inhibitors has been highly effective in controlling HIV. However, the drugs used in the ART regimen are expensive, cause side effects, and face viral resistance. The HIV-1 CA plays critical roles in the virus life cycle and is an attractive therapeutic target. While currently there is no CA-based therapy, highly potent CA-specific inhibitors are being developed as a new class of antivirals. Efforts to develop a CA-targeted therapy can be aided through a clear understanding of the role of CA in HIV-1 infection. CA is well established to coordinate reverse transcription and nuclear entry of the virus. However, the role of CA in post-nuclear entry steps of HIV-1 infection is poorly understood. We show that a CA-specific drug PF74 inhibits HIV-1 integration revealing a novel role of this multifunctional viral protein in a post-nuclear entry step of HIV-1 infection.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Indoles/farmacología , Fenilalanina/análogos & derivados , Fármacos Anti-VIH , Cápside/efectos de los fármacos , Proteínas de la Cápside/genética , Línea Celular , ADN Viral/genética , Células HEK293 , Seropositividad para VIH/genética , VIH-1/genética , Humanos , Fenilalanina/farmacología , Transcripción Reversa/genética , Integración Viral/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
20.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31413124

RESUMEN

Particle maturation is a critical step in the HIV-1 replication cycle that requires proteolytic cleavage of the Gag polyprotein into its constitutive proteins: the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 proteins. The accurate and efficient cleavage of Gag is essential for virion infectivity; inhibitors of the viral protease are potent antivirals, and substitutions in Gag that prevent its cleavage result in reduced HIV-1 infectivity. In a previous study, a mutation inhibiting cleavage at the MA-CA junction was observed to potently inhibit virus infection: incorporation of small amounts of uncleaved MA-CA protein into HIV-1 particles inhibited infectivity by ∼95%, and the resulting viral particles exhibited aberrant capsids. Here we report a detailed mechanistic analysis of HIV-1 particles bearing uncleaved MA-CA protein. We show that the particles contain stable cores and can efficiently saturate host restriction by TRIMCyp in target cells. We further show that MA-CA associates with CA in particles without detectably affecting the formation of intermolecular CA interfaces. Incorporation of MA-CA did not markedly affect reverse transcription in infected cells, but nuclear entry was impaired and integration targeting was altered. Additionally, results from mutational analysis of Gag revealed that membrane-binding elements of MA contribute to the antiviral activity of uncleaved MA-CA protein. Our results suggest that small amounts of partially processed Gag subunits coassemble with CA during virion maturation, resulting in impaired capsid functions.IMPORTANCE To become infectious, newly formed HIV-1 particles undergo a process of maturation in which the viral polyproteins are cleaved into smaller components. A previous study demonstrated that inclusion of even small quantities of an uncleavable mutant Gag polyprotein results in a strong reduction in virus infectivity. Here we show that the mechanism of transdominant inhibition by uncleavable Gag involves inhibition of nuclear entry and alteration of viral integration sites. Additionally, the results of mutational analysis suggest that the membrane-binding activity of Gag is a major requirement for the antiviral activity. These results further define the antiviral mechanism of uncleavable Gag, which may be useful for exploiting this effect to develop new antivirals.


Asunto(s)
Proteínas de la Cápside/metabolismo , Núcleo Celular/metabolismo , Infecciones por VIH/virología , Proteínas Virales de Fusión/metabolismo , Proteínas de la Matriz Viral/metabolismo , Integración Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Transporte Activo de Núcleo Celular , Proteínas de la Cápside/genética , Núcleo Celular/virología , Células HEK293 , VIH-1/fisiología , Humanos , Nucleocápside , Transcripción Reversa , Proteínas Virales de Fusión/genética , Proteínas de la Matriz Viral/genética , Virión , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA