Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Semin Cancer Biol ; 86(Pt 2): 69-80, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36064086

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy characterized by high resistance and poor response to chemotherapy. In addition, the poorly immunogenic pancreatic tumors constitute an immunosuppressive tumor microenvironment (TME) that render immunotherapy-based approaches ineffective. Understanding the mechanisms of therapy resistance, identifying new targets, and developing effective strategies to overcome resistance can significantly impact the management of PDAC patients. Chemokines are small soluble factors that are significantly deregulated during PDAC pathogenesis, contributing to tumor growth, metastasis, immune cell trafficking, and therapy resistance. Thus far, different chemokine pathways have been explored as therapeutic targets in PDAC, with some promising results in recent clinical trials. Particularly, immunotherapies such as immune check point blockade therapies and CAR-T cell therapies have shown promising results when combined with chemokine targeted therapies. Considering the emerging pathological and clinical significance of chemokines in PDAC, we reviewed major chemokine-regulated pathways leading to therapy resistance and the ongoing endeavors to target chemokine signaling in PDAC. This review discusses the role of chemokines in regulating therapy resistance in PDAC and highlights the continuing efforts to target chemokine-regulated pathways to improve the efficacy of various treatment modalities.


Asunto(s)
Carcinoma Ductal Pancreático , Quimiocinas , Resistencia a Antineoplásicos , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Quimiocinas/genética , Quimiocinas/inmunología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/inmunología , Neoplasias Pancreáticas
2.
Cancer Metastasis Rev ; 38(1-2): 223-236, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30618016

RESUMEN

Mucins (MUC) protect epithelial barriers from environmental insult to maintain homeostasis. However, their aberrant overexpression and glycosylation in various malignancies facilitate oncogenic events from inception to metastasis. Mucin-associated sialyl-Tn (sTn) antigens bind to various receptors present on the dendritic cells (DCs), macrophages, and natural killer (NK) cells, resulting in overall immunosuppression by either receptor masking or inhibition of cytolytic activity. MUC1-mediated interaction of tumor cells with innate immune cells hampers cross-presentation of processed antigens on MHC class I molecules. MUC1 and MUC16 bind siglecs and mask Toll-like receptors (TLRs), respectively, on DCs promoting an immature DC phenotype that in turn reduces T cell effector functions. Mucins, such as MUC1, MUC2, MUC4, and MUC16, interact with or form aggregates with neutrophils, macrophages, and platelets, conferring protection to cancer cells during hematological dissemination and facilitate their spread and colonization to the metastatic sites. On the contrary, poor glycosylation of MUC1 and MUC4 at the tandem repeat region (TR) generates cancer-specific immunodominant epitopes. The presence of MUC16 neo-antigen-specific T cell clones and anti-MUC1 antibodies in cancer patients suggests that mucins can serve as potential targets for developing cancer therapeutics. The present review summarizes the molecular events involved in mucin-mediated immunomodulation, and metastasis, as well as the utility of mucins as targets for cancer immunotherapy and radioimmunotherapy.


Asunto(s)
Mucinas/inmunología , Neoplasias/inmunología , Neoplasias/patología , Animales , Humanos , Inmunomodulación , Metástasis de la Neoplasia
3.
Am J Gastroenterol ; 112(1): 172-183, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27845339

RESUMEN

OBJECTIVES: Pancreatic cancer (PC) is a lethal malignancy that lacks specific diagnostic markers. The present study explores the diagnostic potential of the most differentially overexpressed secretory mucin MUC5AC alone and in combination with CA19-9 using multi-center training and validation sets. METHODS: The expression of MUC5AC in benign pancreatic pathologies, PC precursor lesions, primary PC tissues and metastatic lesions was evaluated by immunohistochemistry. Circulating MUC5AC levels were measured using sandwich ELISA assay developed in-house, and CA19-9 was measured using radioimmunoassay. A combined training set (n=346) was used to evaluate the diagnostic (n=241) and predictive (n=105, total samples 201 from pre- and post-surgical and chemotherapy set) significance of MUC5AC. Results were further validated with a pre-defined cut-off value using independent sets from the Mayo Clinic (n=94) and the University of Pittsburgh Medical Center (n=321). RESULTS: Tissue expression analyses indicated the de novo expression of MUC5AC in pancreatic intraepithelial precursor lesions 1A (PanIN1A); the expression was maintained through all stages of progression to invasive adenocarcinoma. The median circulating MUC5AC levels in patients with resectable early-stage PC (EPC) (stage 1/2; 67.2 ng/ml, IQR: 23.9-382.1) and unresectable late-stage PC (LPC) (stage 3/4; 389.7 ng/ml, IQR: 87.7-948.6) were significantly higher compared with (P-value ≤0.0001) benign controls (BC) (7.2 ng/ml, IQR: 0.4-26.5) and (P-value ≤0.0001) chronic pancreatitis (CP) controls (8.4 ng/ml, IQR: 1.5-19.2). In the diagnostic training set (n=241), MUC5AC efficiently differentiated EPC from healthy controls (HC) (83%/80% sensitive (SN)/specific (SP)), BC (67%/87% SN/SP), and CP (83%/77% SN/SP). Independent validation sets from the Mayo Clinic and UPMC confirmed the diagnostic potential of MUC5AC to differentiate EPC from BC (68%/73%; 65%/83%) and CP (68%/79%; 65%/72%). Furthermore, MUC5AC and CA19-9 combination significantly improved (p-value < 0.001) the diagnostic accuracy for differentiating resectable cases from controls. CONCLUSIONS: MUC5AC is a valuable diagnostic biomarker, either alone or in combination with CA19-9, to differentiate PC from CP and benign controls.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Antígeno CA-19-9/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Mucina 5AC/metabolismo , Neoplasias Pancreáticas/metabolismo , Adenoma de Células de los Islotes Pancreáticos/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Análisis Multivariante , Neoplasias Pancreáticas/diagnóstico , Pancreatitis Crónica/metabolismo , Radioinmunoensayo , Sensibilidad y Especificidad
4.
J Biol Chem ; 289(15): 10637-10649, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24570007

RESUMEN

Double C2-like domain ß (DOC2B) gene encodes for a calcium-binding protein, which is involved in neurotransmitter release, sorting, and exocytosis. We have identified the promoter region of the DOC2B gene as hypermethylated in pre-malignant, malignant cervical tissues, and cervical cancer cell lines by methylation-sensitive dimethyl sulfoxide-polymerase chain reaction and bisulfite genome sequencing; whereas, it was unmethylated in normal cervical tissues (p < 0.05). The promoter hypermethylation was inversely associated with mRNA expression in SiHa, CaSki, and HeLa cells and treatment with demethylating agent 5-aza-2-deoxycytidine restored DOC2B expression. The region -630 to +25 bp of the DOC2B gene showed robust promoter activity by a luciferase reporter assay and was inhibited by in vitro artificial methylation with Sss1 methylase prior to transient transfections. Overexpression of the DOC2B gene in SiHa cells when compared with controls showed significantly reduced colony formation, cell proliferation, induced cell cycle arrest, and repressed cell migration and invasion (p < 0.05). Ectopic expression of DOC2B resulted in anoikis-mediated cell death and repressed tumor growth in a nude mice xenograft model (p < 0.05). DOC2B expressing cells showed a significant increase in intracellular calcium level (p < 0.05), impaired AKT1 and ERK1/2 signaling, and induced actin cytoskeleton remodeling. Our results show that promoter hypermethylation and silencing of the DOC2B gene is an early and frequent event during cervical carcinogenesis and whose reduced expression due to DNA promoter methylation may lead to selective cervical tumor growth.


Asunto(s)
Proteínas de Unión al Calcio/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas , Neoplasias del Cuello Uterino/metabolismo , Actinas/metabolismo , Animales , Apoptosis , Calcio/química , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Islas de CpG , Femenino , Genotipo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/metabolismo , Papillomaviridae/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Sulfitos/química
5.
Cancers (Basel) ; 15(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36980526

RESUMEN

Early detection significantly correlates with improved survival in cancer patients. So far, a limited number of biomarkers have been validated to diagnose cancers at an early stage. Considering the leading cancer types that contribute to more than 50% of deaths in the USA, we discuss the ongoing endeavors toward early detection of lung, breast, ovarian, colon, prostate, liver, and pancreatic cancers to highlight the significance of mucin glycoproteins in cancer diagnosis. As mucin deregulation is one of the earliest events in most epithelial malignancies following oncogenic transformation, these high-molecular-weight glycoproteins are considered potential candidates for biomarker development. The diagnostic potential of mucins is mainly attributed to their deregulated expression, altered glycosylation, splicing, and ability to induce autoantibodies. Secretory and shed mucins are commonly detected in patients' sera, body fluids, and tumor biopsies. For instance, CA125, also called MUC16, is one of the biomarkers implemented for the diagnosis of ovarian cancer and is currently being investigated for other malignancies. Similarly, MUC5AC, a secretory mucin, is a potential biomarker for pancreatic cancer. Moreover, anti-mucin autoantibodies and mucin-packaged exosomes have opened new avenues of biomarker development for early cancer diagnosis. In this review, we discuss the diagnostic potential of mucins in epithelial cancers and provide evidence and a rationale for developing a mucin-based biomarker panel for early cancer detection.

6.
Oncogene ; 42(10): 759-770, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36624189

RESUMEN

Mucin4 (MUC4) appears early during pancreatic intraepithelial neoplasia-1 (PanIN1), coinciding with the expression of epidermal growth factor receptor-1 (EGFR). The EGFR signaling is required for the onset of Kras-driven pancreatic ductal adenocarcinoma (PDAC); however, the players and mechanisms involved in sustained EGFR signaling in early PanIN lesions remain elusive. We generated a unique Esai-CRISPR-based Muc4 conditional knockout murine model to evaluate its effect on PDAC pathology. The Muc4 depletion in the autochthonous murine model carrying K-ras and p53 mutations (K-rasG12D; TP53R172H; Pdx-1cre, KPC) to generate the KPCM4-/- murine model showed a significant delay in the PanIN lesion formation with a significant reduction (p < 0.01) in EGFR (Y1068) and ERK1/2 (T202/Y204) phosphorylation. Further, a significant decrease (p < 0.01) in Sox9 expression in PanIN lesions of KPCM4-/- mice suggested the impairment of acinar-to-ductal metaplasia in Muc4-depleted cells. The biochemical analyses demonstrated that MUC4, through its juxtamembrane EGF-like domains, interacts with the EGFR ectodomain, and its cytoplasmic tail prevents EGFR ubiquitination and subsequent proteasomal degradation upon ligand stimulation, leading to sustained downstream oncogenic signaling. Targeting the MUC4 and EGFR interacting interface provides a promising strategy to improve the efficacy of EGFR-targeted therapies in PDAC and other MUC4-expressing malignancies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Fosforilación , Modelos Animales de Enfermedad , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/genética , Carcinogénesis , Receptores ErbB/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas
7.
NPJ Precis Oncol ; 7(1): 74, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567918

RESUMEN

Aberrantly expressed onco-mucin 16 (MUC16) and its post-cleavage generated surface tethered carboxy-terminal (MUC16-Cter) domain are strongly associated with poor prognosis and lethality of pancreatic (PC) and non-small cell lung cancer (NSCLC). To date, most anti-MUC16 antibodies are directed towards the extracellular domain of MUC16 (CA125), which is usually cleaved and shed in the circulation hence obscuring antibody accessibility to the cancer cells. Herein, we establish the utility of targeting a post-cleavage generated, surface-tethered oncogenic MUC16 carboxy-terminal (MUC16-Cter) domain by using a novel chimeric antibody in human IgG1 format, ch5E6, whose epitope expression directly correlates with disease severity in both cancers. ch5E6 binds and interferes with MUC16-associated oncogenesis, suppresses the downstream signaling pFAK(Y397)/p-p70S6K(T389)/N-cadherin axis and exert antiproliferative effects in cancer cells, 3D organoids, and tumor xenografts of both PC and NSCLC. The robust clinical correlations observed between MUC16 and N-cadherin in patient tumors and metastatic samples imply ch5E6 potential in targeting a complex and significantly occurring phenomenon of epithelial to mesenchymal transition (EMT) associated with disease aggressiveness. Our study supports evaluating ch5E6 with standard-of-care drugs, to potentially augment treatment outcomes in malignancies inflicted with MUC16-associated poor prognosis.

8.
Cancer Lett ; 544: 215801, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35732216

RESUMEN

Delivery of therapeutic agents in pancreatic cancer (PC) is impaired due to its hypovascular and desmoplastic tumor microenvironment. The Endothelin (ET)-axis is the major regulator of vasomotor tone under physiological conditions and is highly upregulated in multiple cancers. We investigated the effect of dual endothelin receptor antagonist bosentan on perfusion and macromolecular transport in a PC cell-fibroblast co-implantation tumor model using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI). Following bosentan treatment, the contrast enhancement ratio and wash-in rates in tumors were two- and nine times higher, respectively, compared to the controls, whereas the time to peak was significantly shorter (7.29 ± 1.29 min v/s 22.08 ± 5.88 min; p = 0.04). Importantly, these effects were tumor selective as the magnitudes of change for these parameters were much lower in muscles. Bosentan treatment also reduced desmoplasia and improved intratumoral distribution of high molecular weight FITC-dextran. Overall, these findings support that targeting the ET-axis can serve as a potential strategy to selectively enhance tumor perfusion and improve the delivery of therapeutic agents in pancreatic tumors.


Asunto(s)
Antagonistas de los Receptores de Endotelina , Neoplasias Pancreáticas , Bosentán , Antagonistas de los Receptores de Endotelina/farmacología , Antagonistas de los Receptores de Endotelina/uso terapéutico , Endotelinas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Perfusión , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Microambiente Tumoral , Neoplasias Pancreáticas
9.
Biochim Biophys Acta Rev Cancer ; 1876(1): 188554, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33945847

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy that is characterized by early metastasis, low resectability, high recurrence, and therapy resistance. The experimental mouse models have played a central role in understanding the pathobiology of PDAC and in the preclinical evaluation of various therapeutic modalities. Different mouse models with targetable pathological hallmarks have been developed and employed to address the unique challenges associated with PDAC progression, metastasis, and stromal heterogeneity. Over the years, mouse models have evolved from simple cell line-based heterotopic and orthotopic xenografts in immunocompromised mice to more complex and realistic genetically engineered mouse models (GEMMs) involving multi-gene manipulations. The GEMMs, mostly driven by KRAS mutation(s), have been widely accepted for therapeutic optimization due to their high penetrance and ability to recapitulate the histological, molecular, and pathological hallmarks of human PDAC, including comparable precursor lesions, extensive metastasis, desmoplasia, perineural invasion, and immunosuppressive tumor microenvironment. Advanced GEMMs modified to express fluorescent proteins have allowed cell lineage tracing to provide novel insights and a new understanding about the origin and contribution of various cell types in PDAC pathobiology. The syngeneic mouse models, GEMMs, and target-specific transgenic mice have been extensively used to evaluate immunotherapies and study therapy-induced immune modulation in PDAC yielding meaningful results to guide various clinical trials. The emerging mouse models for parabiosis, hepatic metastasis, cachexia, and image-guided implantation, are increasingly appreciated for their high translational significance. In this article, we describe the contribution of various experimental mouse models to the current understanding of PDAC pathobiology and their utility in evaluating and optimizing therapeutic modalities for this lethal malignancy.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/terapia , Inmunoterapia , Neoplasias Experimentales/terapia , Neoplasias Pancreáticas/terapia , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Predisposición Genética a la Enfermedad , Ratones Transgénicos , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fenotipo , Especificidad de la Especie , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Theranostics ; 11(3): 1493-1512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391547

RESUMEN

Over the past three decades, monoclonal antibodies (mAbs) have revolutionized the landscape of cancer therapy. Still, this benefit remains restricted to a small proportion of patients due to moderate response rates and resistance emergence. The field has started to embrace better mAb-based formats with advancements in molecular and protein engineering technologies. The development of a therapeutic mAb with long-lasting clinical impact demands a prodigious understanding of target antigen, effective mechanism of action, gene engineering technologies, complex interplay between tumor and host immune system, and biomarkers for prediction of clinical response. This review discusses the various approaches used by mAbs for tumor targeting and mechanisms of therapeutic resistance that is not only caused by the heterogeneity of tumor antigen, but also the resistance imposed by tumor microenvironment (TME), including inefficient delivery to the tumor, alteration of effector functions in the TME, and Fc-gamma receptor expression diversity and polymorphism. Further, this article provides a perspective on potential strategies to overcome these barriers and how diagnostic and prognostic biomarkers are being used in predicting response to mAb-based therapies. Overall, understanding these interdependent parameters can improve the current mAb-based formulations and develop novel mAb-based therapeutics for achieving durable clinical outcomes in a large subset of patients.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Animales , Antígenos de Neoplasias/inmunología , Biomarcadores de Tumor/inmunología , Humanos , Receptores de IgG/inmunología , Microambiente Tumoral/inmunología
11.
Sci Rep ; 11(1): 23730, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887447

RESUMEN

MUC4 is a transmembrane mucin expressed on various epithelial surfaces, including respiratory and gastrointestinal tracts, and helps in their lubrication and protection. MUC4 is also aberrantly overexpressed in various epithelial malignancies and functionally contributes to cancer development and progression. MUC4 is putatively cleaved at the GDPH site into a mucin-like α-subunit and a membrane-tethered growth factor-like ß-subunit. Due to the presence of several functional domains, the characterization of MUC4ß is critical for understanding MUC4 biology. We developed a method to produce and purify multi-milligram amounts of recombinant MUC4ß (rMUC4ß). Purified rMUC4ß was characterized by Far-UV CD and I-TASSER-based protein structure prediction analyses, and its ability to interact with cellular proteins was determined by the affinity pull-down assay. Two of the three EGF-like domains exhibited typical ß-fold, while the third EGF-like domain and vWD domain were predominantly random coils. We observed that rMUC4ß physically interacts with Ezrin and EGFR family members. Overall, this study describes an efficient and simple strategy for the purification of biologically-active rMUC4ß that can serve as a valuable reagent for a variety of biochemical and functional studies to elucidate MUC4 function and generating domain-specific antibodies and vaccines for cancer immunotherapy.


Asunto(s)
Mucina 4/genética , Mucina 4/metabolismo , Subunidades de Proteína , Proteínas Recombinantes , Clonación Molecular , Expresión Génica , Orden Génico , Humanos , Espectrometría de Masas , Modelos Moleculares , Mucina 4/química , Mucina 4/aislamiento & purificación , Plásmidos/genética , Unión Proteica , Relación Estructura-Actividad
12.
J Biomed Mater Res A ; 109(6): 893-902, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32776461

RESUMEN

Pancreatic cancer (PC) is one of the most lethal malignancies and represents an increasing and challenging threat, especially with an aging population. The identification of immunogenic PC-specific upregulated antigens and an enhanced understanding of the immunosuppressive tumor microenvironment have provided opportunities to enable the immune system to recognize cancer cells. Due to its differential upregulation and functional role in PC, the transmembrane mucin MUC4 is an attractive target for immunotherapy. In the current study we characterized the antigen stability, antigenicity and release kinetics of a MUC4ß-nanovaccine to guide further optimization and, in vivo evaluation. Amphiphilic polyanhydride copolymers based on 20 mol % 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane and 80 mol % 1,6-bis(p-carboxyphenoxy)hexane were used to synthesize nanoparticles. Structurally stable MUC4ß protein was released from the particles in a sustained manner and characterized by gel electrophoresis and fluorescence spectroscopy. Modest levels of protein degradation were observed upon release. The released protein was also analyzed by MUC4ß-specific monoclonal antibodies using ELISA and showed no significant loss of epitope availability. Further, mice immunized with multiple formulations of combination vaccines containing MUC4ß-loaded nanoparticles generated MUC4ß-specific antibody responses. These results indicate that polyanhydride nanoparticles are viable MUC4ß vaccine carriers, laying the foundation for evaluation of this platform for PC immunotherapy.


Asunto(s)
Antígenos de Neoplasias/química , Vacunas contra el Cáncer/química , Mucina 4/química , Nanopartículas , Neoplasias Pancreáticas/química , Polianhídridos/química , Animales , Portadores de Fármacos , Epítopos , Humanos , Ratones
13.
Expert Opin Ther Targets ; 22(8): 675-686, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29999426

RESUMEN

INTRODUCTION: MUC16 is overexpressed in multiple cancers and plays an important role in tumorigenicity and acquired resistance to therapy. Area covered: In this review, we describe the role of MUC16 under normal physiological conditions and during tumorigenesis. First, we provide a summary of research on MUC16 from its discovery as CA125 to present anti-MUC16 therapy trials that are currently in the initial phases of clinical testing. Finally, we discuss the reasons for the limited effectiveness of these therapies and discuss the direction and focus of future research. Expert opinion: Apart from its protective role in normal physiology, MUC16 contributes to disease progression and metastasis in several malignancies. Due to its aberrant overexpression, it is a promising target for diagnosis and therapy. Cleavage and shedding of its extracellular domain is the major barrier for efficient targeting of MUC16-expressing cancers. Concerted efforts should be undertaken to target the noncleaved cell surface retained portion of MUC16. Such efforts should be accompanied by basic research to understand MUC16 cleavage and decipher the functioning of MUC16 cytoplasmic tail. While previous efforts to activate anti-MUC16 immune response using anti-CA125 idiotype antibodies have met with limited success, ideification of neo-antigenic epitopes in MUC16 that correlate with improved survival have raised raised hopes for developing MUC16-targeted immunotherapy.


Asunto(s)
Antígeno Ca-125/genética , Proteínas de la Membrana/genética , Terapia Molecular Dirigida , Neoplasias/terapia , Animales , Antígeno Ca-125/inmunología , Progresión de la Enfermedad , Epítopos/inmunología , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia/métodos , Proteínas de la Membrana/inmunología , Neoplasias/inmunología , Neoplasias/patología , Sobrevida
14.
Cancer Lett ; 417: 35-46, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29242097

RESUMEN

Pancreatic cancer (PC) is the fourth leading cause of cancer-related deaths in the U.S., claiming approximately 43,000 lives every year. Much like other solid tumors, PC evades the host immune surveillance by manipulating immune cells to establish an immunosuppressive tumor microenvironment (TME). Therefore, targeting and reinstating the patient's immune system could serve as a powerful therapeutic tool. Indeed, immunotherapy has emerged in recent years as a potential adjunct treatment for solid tumors including PC. Immunotherapy modulates the host's immune response to tumor-associated antigens (TAAs), eradicates cancer cells by reducing host tolerance to TAAs and provides both short- and long-term protection against the disease. Passive immunotherapies like monoclonal antibodies or engineered T-cell based therapies directly target tumor cells by recognizing TAAs. Active immunotherapies, like cancer vaccines, on the other hand elicit a long-lasting immune response via activation of the patient's immune cells against cancer cells. Several immunotherapy strategies have been tested for anti-tumor responses alone and in combination with standard care in multiple preclinical and clinical studies. In this review, we discuss various immunotherapy strategies used currently and their efficacy in abrogating self-antigen tolerance and immunosuppression, as well as their ability to eradicate PC.


Asunto(s)
Antígenos de Neoplasias/inmunología , Inmunoterapia/métodos , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Microambiente Tumoral/inmunología , Animales , Antígenos de Neoplasias/uso terapéutico , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Humanos , Inmunoterapia/tendencias , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Linfocitos T/trasplante , Microambiente Tumoral/efectos de los fármacos
15.
PLoS One ; 13(4): e0193907, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29708979

RESUMEN

MUC16 is overexpressed in ovarian cancer and plays important roles in invasion and metastasis. Previously described monoclonal antibodies against cell surface expressed MUC16 recognize the N-terminal tandemly repeated epitopes present in cancer antigen 125 (CA125). MUC16 is cleaved at a specific location, thus, releasing CA125 into the extracellular space. Recent reports have indicated that the retained carboxy-terminal (CT) fragment of MUC16 might play an important role in tumorigenicity in diverse types of cancers. However, limited data is available on the fate and existence of CT fragment on the surface of the cancer cell. Herein, we characterize two monoclonal antibodies (mAbs) showing specificity to the retained juxtamembrane region of MUC16. For the first time, we demonstrate that MUC16 is cleaved in ovarian cancer cells (NIH:OVCAR-3 [OVCAR-3]) and that the cleaved MUC16 subunits remain associated with each other. Immunohistochemical analyses on different grades of ovarian tumor tissues indicated differential reactivity of CA125 and MUC16 CT mAbs. The CA125 (M11) mAb detected 32/40 (80%), while the CT mAb (5E6) detected 33/40 (82.5%) of total ovarian cancer cases. For serous and serous papillary cases, the CA125 (M11) mAb stained 27/31 cases (87%), while CT mAb (5E6) stained 29/31 cases (93.5%). The CT mAb(s) accurately predict expression of MUC16 since their epitopes are not tandemly repeated and their reactivity may not be dependent on O-linked glycosylation. These antibodies can serve as valuable reagents for understanding MUC16 cleavage and may also serve as potential therapeutic agents for treatment of ovarian cancer.


Asunto(s)
Anticuerpos Monoclonales , Antígeno Ca-125/inmunología , Epítopos/inmunología , Proteínas de la Membrana/inmunología , Neoplasias Ováricas/metabolismo , Animales , Antígeno Ca-125/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Neoplasias Ováricas/patología
16.
PLoS One ; 7(4): e34613, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509333

RESUMEN

Vaccines based on microbial cell surface polysaccharides have long been considered as attractive means to control infectious diseases. To realize this goal, detailed systematic information about the antigenic polysaccharide is necessary. However, only a few databases that provide limited knowledge in this area are available. This paper describes PolysacDB, a manually curated database of antigenic polysaccharides. We collected and compiled comprehensive information from literature and web resources about antigenic polysaccharides of microbial origin. The current version of the database has 1,554 entries of 149 different antigenic polysaccharides from 347 different microbes. Each entry provides comprehensive information about an antigenic polysaccharide, i.e., its origin, function, protocols for its conjugation to carriers, antibodies produced, details of assay systems, specificities of antibodies, proposed epitopes involved and antibody utilities. For convenience to the user, we have integrated web interface for searching, advanced searching and browsing data in database. This database will be useful for researchers working on polysaccharide-based vaccines. It is freely available from the URL: http://crdd.osdd.net/raghava/polysacdb/.


Asunto(s)
Anticuerpos/inmunología , Antígenos/inmunología , Bases de Datos Factuales , Microbiología , Polisacáridos/inmunología , Especificidad de Anticuerpos , Internet , Vacunas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA