RESUMEN
BACKGROUND: The gram-negative Coxiella burnetii bacterium is the pathogen that causes Q fever. The bacterium is transmitted to animals via ticks, and manure, air, dead infected animals, etc. and can cause infection in domestic animals, wild animals, and humans. Xinjiang, the provincial-level administrative region with the largest land area in China, has many endemic tick species. The infection rate of C. burnetii in ticks in Xinjiang border areas has not been studied in detail. RESULTS: For the current study, 1507 ticks were collected from livestock at 22 sampling sites in ten border regions of the Xinjiang Uygur Autonomous region from 2018 to 2019. C. burnetii was detected in 205/348 (58.91%) Dermacentor nuttalli; in 110/146 (75.34%) D. pavlovskyi; in 66/80 (82.50%) D. silvarum; in 15/32 (46.90%) D. niveus; in 28/132 (21.21%) Hyalomma rufipes; in 24/25 (96.00%) H. anatolicum; in 219/312 (70.19%) H. asiaticum; in 252/338 (74.56%) Rhipicephalus sanguineus; and in 54/92 (58.70%) Haemaphysalis punctata. Among these samples, C. burnetii was detected in D. pavlovskyi for the first time. The infection rate of Rhipicephalus was 74.56% (252/338), which was the highest among the four tick genera sampled, whereas the infection rate of H. anatolicum was 96% (24/25), which was the highest among the nine tick species sampled. A sequence analysis indicated that 63 16S rRNA sequences could be found in four newly established genotypes: MT498683.1 (n = 18), MT498684.1 (n = 33), MT498685.1 (n = 6), and MT498686.1 (n = 6). CONCLUSIONS: This study indicates that MT498684.1 might represent the main C. burnetii genotype in the ticks in Xinjiang because it was detected in eight of the tick species studied. The high infection rate of C. burnetii detected in the ticks found in domestic animals may indicate a high likelihood of Q fever infection in both domestic animals and humans.
Asunto(s)
Coxiella burnetii/aislamiento & purificación , Ixodidae/microbiología , Fiebre Q/epidemiología , Animales , Vectores Arácnidos/microbiología , China/epidemiología , Coxiella burnetii/genética , Ganado/parasitología , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADNRESUMEN
Cystic echinococcosis (CE) is a grievous zoonotic parasitic disease. Currently, the traditional technology of screening CE is laborious and expensive, developing an innovative technology is urgent. In this study, we combined serum fluorescence spectroscopy with machine learning algorithms to develop an innovative screening technique to diagnose CE in sheep. Serum fluorescence spectra of Echinococcus granulosus sensu stricto-infected group (n = 63) and uninfected E. granulosus s.s. group (n = 60) under excitation at 405 nm were recorded. The linear support vector machine (Linear SVM), Quadratic SVM, medium radial basis function (RBF) SVM, K-nearest neighbor (KNN), and principal component analysis-linear discriminant analysis (PCA-LDA) were used to analyze the spectra data. The results showed that Quadratic SVM had the great classification capacity, its sensitivity, specificity, and accuracy were 85.0%, 93.8%, and 88.9%, respectively. In short, serum fluorescence spectroscopy combined with Quadratic SVM algorithm has great potential in the innovative diagnosis of CE in sheep.
Asunto(s)
Equinococosis , Animales , Ovinos , Equinococosis/diagnóstico por imagen , Equinococosis/veterinaria , Análisis Discriminante , Análisis por Conglomerados , Algoritmos , Máquina de Vectores de SoporteRESUMEN
Bartonella are gram-negative intracellular bacteria; certain species of Bartonella can cause diseases in mammals and humans. Ticks play a major role in the transmission of Bartonella. Xinjiang is the largest province in China according to land area and has one-third of the tick species in China; the infection rate of Bartonella in ticks in the Xinjiang border areas has not been studied in detail. Therefore, this study investigated tick infections by Bartonella in Xinjiang border areas, and the purpose of the study was to fill in gaps in information regarding the genetic diversity of tick infections by Bartonella in Xinjiang. We tested 1,549 tick samples from domestic animals (sheep and cattle) for Bartonella using ribC-PCR. Positive samples from the ribC-PCR assay for Bartonella spp. were further subjected to PCR assays targeting the ITS, rpoB and gltA genes followed by phylogenetic analyses. Bartonella DNA was detected in 2.19% (34/1,549) of tick samples, and the ITS, rpoB and gltA genes of ribC gene-positive samples were amplified to identify nine samples of Bartonella melophagi. In this study, molecular analysis was used to assess the presence and genetic diversity of B. melophagi in ticks collected from sheep and cattle from Xinjiang, China. This study provides new information on the presence and identity of B. melophagi in ticks from sheep and cattle.