Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Kidney Blood Press Res ; 39(4): 353-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25322850

RESUMEN

BACKGROUND/AIMS: The kinases SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) participate in the regulation of the NaCl cotransporter NCC and the Na+, K+, 2Cl- cotransporter NKCC2. The kinases are regulated by WNK (with-no-K[Lys]) kinases. Mutations of genes encoding WNK kinases underly Gordon's syndrome, a monogenic disease leading to hypertension and hyperkalemia. WNK kinases further regulate the renal outer medullary K+ channel ROMK1. The present study explored, whether SPAK and/or OSR1 have similarly the potential to modify the activity of ROMK1. METHODS: ROMK1 was expressed in Xenopus oocytes with or without additional expression of wild-type SPAK, constitutively active (T233E)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1 and catalytically inactive (D164A)OSR1. Channel activity was determined utilizing dual electrode voltage clamp and ROMK1 protein abundance in the cell membrane utilizing chemiluminescence of ROMK1 containing an extracellular hemagglutinin epitope (ROMK1-HA). RESULTS: ROMK1 activity and ROMK1-HA protein abundance were significantly down-regulated by wild-type SPAK and (T233E)SPAK, but not by (D212A)SPAK. Similarly, ROMK1 activity and ROMK1-HA protein abundance were significantly down-regulated by wild-type OSR1 and (T185E)OSR1, but not by (D164A)OSR1. CONCLUSION: ROMK1 protein abundance and activity are down-regulated by SPAK and OSR1.


Asunto(s)
Médula Renal/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Ratones , Oocitos/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Xenopus laevis
2.
Kidney Blood Press Res ; 39(6): 609-22, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25571875

RESUMEN

BACKGROUND/AIMS: Klotho, a protein mainly produced in the kidney and released into circulating blood, contributes to the negative regulation of 1,25(OH)2D3 formation and is thus a powerful regulator of mineral metabolism. As ß-glucuronidase, alpha Klotho protein further regulates the stability of several carriers and channels in the plasma membrane and thus regulates channel and transporter activity. Accordingly, alpha Klotho protein participates in the regulation of diverse functions seemingly unrelated to mineral metabolism including lymphocyte function. The present study explored the impact of alpha Klotho protein on the voltage gated K+ channel Kv1.3. METHODS: cRNA encoding Kv1.3 (KCNA3) was injected into Xenopus oocytes and depolarization induced outward current in Kv1.3 expressing Xenopus oocytes determined utilizing dual electrode voltage clamp. Experiments were performed without or with prior treatment with recombinant human Klotho protein (50 ng/ml, 24 hours) in the absence or presence of a ß-glucuronidase inhibitor D-saccharic acid-1,4-lactone (DSAL, 10 µM). Moreover, the voltage gated K+ current was determined in Jcam lymphoma cells by whole cell patch clamp following 24 hours incubation without or with recombinant human Klotho protein (50 ng/ml, 24 hours). Kv1.3 protein abundance in Jcam cells was determined utilising fluorescent antibodies in flow cytometry. RESULTS: In Kv1.3 expressing Xenopus oocytes the Kv1.3 currents and the protein abundance of Kv1.3 were both significantly enhanced after treatment with recombinant human Klotho protein (50 ng/ml, 24 hours), an effect reversed by presence of DSAL. Moreover, treatment with recombinant human Klotho protein increased Kv currents and Kv1.3 protein abundance in Jcam cells. CONCLUSION: Alpha Klotho protein enhances Kv1.3 channel abundance and Kv1.3 currents in the plasma membrane, an effect depending on its ß-glucuronidase activity.


Asunto(s)
Glucuronidasa/farmacología , Canal de Potasio Kv1.3/efectos de los fármacos , Animales , Línea Celular Tumoral , Ácido Glucárico/farmacología , Glucuronidasa/antagonistas & inhibidores , Humanos , Proteínas Klotho , Canal de Potasio Kv1.3/biosíntesis , Lactonas/farmacología , Oocitos , Técnicas de Placa-Clamp , Proteínas Recombinantes/farmacología , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA