Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 239(Pt 2): 117448, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37858692

RESUMEN

Wound healing is a complex process that often requires intervention to accelerate tissue regeneration and prevent complications. The goal of this research was to assess the potential of bioactive chitosan@poly (ethylene oxide)@CuFe2O4 (CS@PEO@CF) nanofibers for wound healing applications by evaluating their morphology, mechanical properties, and magnetic behavior. Additionally, in vitro and in vivo studies were conducted to investigate their effectiveness in promoting wound healing treatment. The nanoparticles exhibited remarkable antibacterial and antioxidant properties. In the nanofibrous mats, the optimal concentration of CuFe2O4 was determined to be 0.1% Wt/V. Importantly, this concentration did not adversely affect the viability of fibroblast cells, which also identified the ideal concentration. The scaffold's hemocompatibility revealed nonhemolytic properties. Additionally, a wound-healing experiment demonstrated significant migration and growth of fibroblast cells at the edge of the wound. These nanofibrous mats are applied to treat rats with full-thickness excisional wounds. Histopathological analysis of these wounds showed enhanced wound healing ability, as well as regeneration of sebaceous glands and hair follicles within the skin. Overall, the developed wound dressing comprises CuFe2O4 nanoparticles incorporated into CS/PEO nanofibrous mats demonstrating its potential for successful application in wound treatment.


Asunto(s)
Quitosano , Nanofibras , Ratas , Animales , Quitosano/farmacología , Óxido de Etileno , Cicatrización de Heridas , Antibacterianos/farmacología
2.
Environ Res ; 231(Pt 2): 116133, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209981

RESUMEN

Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.


Asunto(s)
Metales Pesados , Nanoestructuras , Purificación del Agua , Tecnología , Purificación del Agua/métodos , Sustancias Peligrosas
3.
J Opt Soc Am A Opt Image Sci Vis ; 40(1): 21-26, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607071

RESUMEN

We prove the existence of relatively large Goos-Hänchen (GH) shifts for graphene in the presence of an applied strain in different crystallographic directions for p and s polarized beams. It is shown that GH shifts are smoothly increased by stretching the graphene's lattice. Moreover, we investigate the GH effect for strained graphene as a function of Fermi energy, which can be controlled by external factors such as gate voltage. We show that applied strain along zigzag and armchair orientations gives different results for GH shifts, which could provide a proper tool for the detection of strain in graphene.

4.
Angew Chem Int Ed Engl ; 62(17): e202217345, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36718001

RESUMEN

Antimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution. In contrast, some are found to trigger the evolution of AMR. Given these seemingly conflicting findings, a timely discussion of the two faces of antimicrobial nanomaterials is urgently needed. This review systematically compares the killing mechanisms and structure-activity relationships of antibiotics and antimicrobial nanomaterials. We then focus on nano-microbe interactions to elucidate the impacts of molecular initiating events on AMR evolution. Finally, we provide an outlook on future antimicrobial nanomaterials and propose design principles for the prevention of AMR evolution.


Asunto(s)
Antibacterianos , Nanoestructuras , Antibacterianos/farmacología , Farmacorresistencia Bacteriana
5.
Nanomedicine ; 14(6): 1891-1903, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29885900

RESUMEN

Recent insights into the nanomedicine have revealed that nanoplatforms enhance the efficacy of carrier in therapeutic applications. Here, multifunctional nanoplatforms were utilized in miRNA-101 delivery and NIR thermal therapy to induce apoptosis in breast cancer cells. Au nanorods (NRs) or nanospheres (NSs) covered with graphene oxide (GO) were prepared and functionalized with polyethylene glycol as a stabilizer and poly-L-arginine (P-L-Arg) as a targeting agent. In nanoplatforms, coupling Au@GO prepared stable structures with higher NIR reactivity. P-L-Arg substantially enhanced the cellular uptake and gene retardation of stuffs coated by them. However, rod-shape nanoplatforms indicated better performance in cellular uptake and gene transfection than spherical ones. NIR thermal therapy was implemented to improve gene release and in synergy with miRNA-101 activated the apoptotic pathway and decreased the viability of breast cancer cell (<20%). Briefly, presented delivery systems are potentially efficient in distinguishing cancer cells, miRNA internalization and controlling apoptosis of cancer cells.


Asunto(s)
Neoplasias de la Mama/terapia , Oro/química , Grafito/química , Hipertermia Inducida , MicroARNs/administración & dosificación , Nanotubos , Fototerapia , Proliferación Celular , Terapia Combinada , Sistemas de Liberación de Medicamentos , Femenino , Humanos , MicroARNs/genética , Células Tumorales Cultivadas
6.
Nano Lett ; 16(9): 5619-30, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27483134

RESUMEN

A remote controllable working graphite nanostructured swimmer based on a graphene jet nanomotor has been demonstrated for the first time. Graphite particles with pyramidal-like morphologies were fabricated by the creation of suitable defects in wide high-purity graphite flakes followed by a severe sonication. The particles were able to be self-exfoliated in water after Na intercalation between the graphene constituents. The self-exfoliation resulted in jet ejection of graphene flakes from the end of the swimmers (with speeds as high as ∼7000 m/s), producing a driving force (at least ∼0.7 L (pN) where L (µm) is swimmer size) and consequently the motion of the swimmer (with average speed of ∼17-40 µm/s). The jet ejection of the graphene flakes was assigned to the explosion of H2 nanobubbles produced between the Na intercalated flakes. The direction of motion of the swimmers equipped with TiO2 nanoparticles (NPs) can be controlled by applying a magnetic field in the presence of UV irradiation (higher UV intensity, lower radius of rotation). In fact, the negative surface charge of the graphene flakes of the swimmers increased by UV irradiation due to transferring the photoexcited electrons of TiO2 NPs into the flakes. Because of higher production of H2 nanobubbles under UV irradiation, the speed of swimmers exposed to UV light significantly increased. In contrast, UV irradiation with various intensities could not affect total distance traversed by the self-exfoliated swimmers having the same initial sizes. These confirmed the mass ejection mechanism for motion of the swimmers. The self-exfoliation of swimmers (and so their motion) occurred only in water (and not, e.g., in organic solutions). Such swimmers promise the design of remote controllable nanovehicles with the capability of initiating and/or improving their operations in response to environmental changes in order to realize broad ranges of versatile and fantastic nanotechnology-based applications.

7.
Biomacromolecules ; 17(9): 2963-71, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27499268

RESUMEN

The graphene-based materials with unique, versatile, and tunable properties have brought new opportunities for the leading edge of advanced nanobiotechnology. In this regard, the use of graphene in gene delivery applications is still at early stages. In this study, we successfully designed a new complex of carboxylated-graphene (G-COOH) with ethidium bromide (EtBr) and used it as a nanovector for efficient gene delivery into the AGS cells. G-COOH, with carboxyl functions on its surface, in the presence of EtBr, formaldehyde, and cyclohexylisocyanide were participated in Ugi four component reaction to fabricate a stable amphiphilic graphene-EtBr (AG-EtBr) composite. The coupling reaction was confirmed by further analyses with FT-IR, AFM, UV-vis, Raman, photoluminescence, EDS, and XPS. The AG-EtBr nanocomposite was able to interact with a plasmid DNA (pDNA). This nanocomposite has been applied for transfection of cultured mammalian cells successfully. Moreover, the AG-EtBr composites showed a remarkable decreased cytotoxicity in compared to EtBr. Interestingly, the advantages of AG-EtBr in cell transfection are more dramatic (3-fold higher) than Lipofectamine2000 as a commercial nonviral vector. To the best of our knowledge, this is the first report in which EtBr is used as an intercalating agent along with graphene to serve as a new vehicle for gene delivery application.


Asunto(s)
ADN/administración & dosificación , Etidio/química , Grafito/química , Proteínas Fluorescentes Verdes/genética , Nanocompuestos/química , Plásmidos/administración & dosificación , Ácidos Carboxílicos/química , Supervivencia Celular , ADN/química , Técnicas de Transferencia de Gen , Humanos , Sustancias Intercalantes/química , Plásmidos/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/terapia , Transfección , Células Tumorales Cultivadas
8.
Materials (Basel) ; 17(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473535

RESUMEN

A Pb-free FASnI3 perovskite solar cell improved by using Cu2O/ZnO as two-dimensional-based hole/electron transport nanolayers has been proposed and studied by using a SCAPS-1D solar simulator. To calibrate our study, at first, an FTO/ZnO/MAPbI3/Cu2O/Au multilayer device was simulated, and the numerical results (including a conversion efficiency of 6.06%, an open circuit potential of 0.76 V, a fill factor parameter of 64.91%, and a short circuit electric current density of 12.26 mA/cm2) were compared with the experimental results in the literature. Then, the conversion efficiency of the proposed FASnI3-based solar cell was found to improve to 7.83%. The depth profile energy levels, charge carrier concentrations, recombination rate of electron/hole pair, and the FASnI3 thickness-dependent solar cell efficiency were studied and compared with the results obtained for the MAPbI3-containing device (as a benchmark). Interestingly, the FASnI3 material required to obtain an optimized solar cell is one-half of the material required for an optimized MAPbI3-based device, with a thickness of 200 nm. These results indicate that developing more environmentally friendly perovskite solar cells is possible if suitable electron/hole transport layers are selected along with the upcoming Pb-free perovskite absorber layers.

10.
Small ; 9(21): 3593-601, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-23625739

RESUMEN

Reduced graphene oxide nanomesh (rGONM), as one of the recent structures of graphene with a surprisingly strong near-infrared (NIR) absorption, is used for achieving ultraefficient photothermal therapy. First, by using TiO2 nanoparticles, graphene oxide nanoplatelets (GONPs) are transformed into GONMs through photocatalytic degradation. Then rGONMs functionalized by polyethylene glycol (PEG), arginine-glycine-aspartic acid (RGD)-based peptide, and cyanine 7 (Cy7) are utilized for in vivo tumor targeting and fluorescence imaging of human glioblastoma U87MG tumors having αν ß3 integrin receptors, in mouse models. The rGONM-PEG suspension (1 µg mL(-1) ) exhibits about 4.2- and 22.4-fold higher NIR absorption at 808 nm than rGONP-PEG and graphene oxide (GO) with lateral dimensions of ≈60 nm and ≈2 µm. In vivo fluorescence imaging demonstrates high selective tumor uptake of rGONM-PEG-Cy7-RGD in mice bearing U87MG cells. The excellent NIR absorbance and tumor targeting of rGONM-PEG-Cy7-RGD results in an ultraefficient photothermal therapy (100% tumor elimination 48 h after intravenous injection of an ultralow concentration (10 µg mL(-1) ) of rGONM-PEG-Cy7-RGD followed by irradiation with an ultralow laser power (0.1 W cm(-2) ) for 7 min), whereas the corresponding rGO- and rGONP-based composites do not present remarkable treatments under the same conditions. All the mice treated by rGONM-PEG-Cy7-RGD survived over 100 days, whereas the mice treated by other usual rGO-based composites were dead before 38 days. The results introduce rGONM as one of the most promising nanomaterials in developing highly desired ultraefficient photothermal therapy.


Asunto(s)
Grafito , Nanoestructuras , Fototerapia/métodos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Glioblastoma/patología , Glioblastoma/terapia , Humanos , Fototerapia/instrumentación
11.
Environ Sci Pollut Res Int ; 30(56): 118754-118763, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37917266

RESUMEN

Recently, due to the superior stability and lower risk of toxicity, the development of Pb-free halide double perovskite materials has revived excellent interest. In this work, Pb-free perovskite solar cells (PSCs) with ITO/ETL/Cs2AgBiBr6/Cu2O/Au multilayer structures with Cs2AgBiBr6 double perovskite as the solar light absorber layer, some electron transport layers (ETLs) and Cu2O as a hole transport layer have been introduced. Then, the effects of various thicknesses of the absorber layer and also ETL materials, like ZnO, C60, CdS, SnO2, phenyl-C61-butyric acid methyl ester (PCBM), and TiO2, on the device performance (including photoelectronic conversion efficiency (PCE), fill factor (FF%), short circuit current density (Jsc), and open-circuit voltage (VOC)) were examined with the help of a solar cell simulator (SCAPS-1D). It is noteworthy that, in the case of all ETL materials, the optimal thickness of the absorber layer was determined to be 400 nm. Then, the maximum PCE values of 20.08%, 17.63%, 14.07%, 12.11%, 14.94%, and 18.83% were obtained for the solar cells containing ZnO, C60, CdS, SnO2, PCBM, and TiO2 as the ETL, respectively. These results show that designing/developing Pb-free halide double perovskite devices having comparable PCEs with the Pb-based PSCs is feasible, provided that proper/compatible materials will be used in the multilayer structure of the next generations of solar cells.


Asunto(s)
Óxido de Zinc , Transporte de Electrón , Compuestos de Calcio , Ésteres
12.
J Colloid Interface Sci ; 637: 237-250, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36701869

RESUMEN

The oxygen-rich organic/inorganic (reduced graphene oxide (rGO)/ZnO2-Ag) nanoframeworks as suppliers of O2 nanobubbles (NBs) with dual pH-and-temperature-sensitive behavior were developed to suppress bacterial growth. It was demonstrated that not only the rate but also the final product of oxygen-rich ZnO2 decomposition (to an intermediate product of H2O2) rate was dramatically controlled by pH adjustment. Furthermore, in the presence of Ag nanoparticles, ̇OH radical generation switched to O2 NBs evolution by shifting the pH from acidic to basic/neutral conditions, demonstrating an adjustable nanozyme function-ability between catalase and peroxidase-like activity, respectively. Antibacterial properties of the in-situ generated O2 NBs substantially enhanced against bacterial models including methicillin-resistant Staphylococcus aureus in the presence of rGO. In fact, deflecting the electrons from their main respiratory chain to an oxygen-rich bypath through rGO significantly stimulated reactive oxygen species (ROS) generation, combating bacteria more efficiently. Moreover, NIR laser irradiation-induced temperature rise (due to the inherent photothermal properties of rGO) facilitated ZnO2 decomposition and accelerated growth and collapse of NBs. The simultaneous microscale thermal and mechanical destructions induced stronger antibacterial behavior. These results hold great promises for designing simple organic/inorganic nanoframeworks as solid sources of NBs with tunable enzyme-like ability in response to environmental conditions suitable for forthcoming graphene-based bio-applications.


Asunto(s)
Grafito , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Óxido de Zinc , Antibacterianos/farmacología , Antibacterianos/química , Catalasa , Grafito/farmacología , Grafito/química , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/química , Oxígeno , Plata/química , Óxido de Zinc/farmacología , Peroxidasa/metabolismo
13.
ACS Appl Mater Interfaces ; 15(3): 3713-3730, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36633466

RESUMEN

Ultrathin MoS2-MoO3-x heterojunction nanosheets with unique features were introduced as biocompatible, non-cytotoxic, and visible light-sensitive stimulator layers for the controlled differentiation of human neural progenitor cells (hNPCs) into nervous lineages. hNPC differentiation was also investigated on reduced graphene oxide (rGO)-containing scaffolds, that is, rGO and rGO/MoS2-MoO3-x nanosheets. In darkness, hNPC differentiation into neurons increased on MoS2-MoO3-x by a factor of 2.7 due to the excellent biophysical cues and further increased on rGO/MoS2-MoO3-x by a factor of 4.4 due to a synergistic effect induced by the rGO. The MoO3-x domains with antioxidant activity and LSPR absorption induced p-type doping in MoS2-MoO3-x. Under photostimulation, the hNPCs on the MoS2-MoO3-x exhibited higher differentiation into glial cells by a factor of 1.4, and the decrease in photo-electron current to hNPCs due to the induction of more p-type doping in the MoS2-MoO3-x. While the increase in neuronal differentiation of hNPCs on rGO/MoS2-MoO3-x by a factor of 1.8 was ascribed to the presence of rGO as an ultrafast electron transferor which quickly transferred photogenerated electrons to hNPCs before their transfer to free radicals, these results demonstrated the promising potential of MoS2-based scaffolds for applying in the controllable repair and/or regeneration of diseases/disorders related to the nervous system.


Asunto(s)
Molibdeno , Células-Madre Neurales , Humanos , Diferenciación Celular
14.
Environ Sci Pollut Res Int ; 30(19): 57032-57040, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36930321

RESUMEN

The lead is a heavy metal with hazardous impacts on environment and human life. Lead-free perovskite solar cells have attracted much attention in recent years, due to eco-friendly characteristics. Meanwhile, Pb-containing cells showed the highest efficiencies among the various types of cells. Hence, designing novel Pb-free solar cells with comparable or better performance than the Pb-containing ones is highly required. In this work, a lead-free methyl-ammonium-germanium-iodide (MAGeI3)-based perovskite solar cell with ITO/TiO2/MAGeI3/Spiro-OMeTAD/Ag multilayer nanostructure has been proposed and its main characteristics including open-circuit voltage (VOC) and power conversion efficiency (η) have been evaluated and compared with those of MAPbI3-based cell, in simulation study. The VOC and η of the MAGeI3-based cell (1.18 V and 11.9%) have been found comparable with those of the MAPbI3 one (1.10 V and 14.6%). These results can excite more attention to Ge as a more environment-friendly element than Pb, in highly efficient upcoming perovskite solar cells.


Asunto(s)
Compuestos de Calcio , Nanoestructuras , Humanos , Óxidos
15.
Bioeng Transl Med ; 8(1): e10347, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684103

RESUMEN

A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.

16.
ACS Biomater Sci Eng ; 8(1): 54-81, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34967216

RESUMEN

Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently earned much attention thanks to its special and inspiring physicochemical properties, such as its large surface area, efficient thermal/electrical properties, carbon-based chemical purity with controllable biocompatibility, easy functionalization, capability of single-molecule detection, anticancer characteristics, 3D template feature in tissue engineering, and, in particular, antibacterial/antiviral activities. In this Review, the most important and challenging viruses of our era, such as human immunodeficiency virus, Ebola, SARS-CoV-2, norovirus, and hepatitis virus, and immunogenic disorders, such as asthma, Alzheimer's disease, and Parkinson's disease, in which graphene-based nanomaterials can effectively take part in the prevention, detection, treatment, medication, and health effect issues, have been covered and discussed.


Asunto(s)
COVID-19 , Grafito , Nanoestructuras , Virus , Humanos , SARS-CoV-2
17.
Materials (Basel) ; 15(5)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35269031

RESUMEN

Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles' physicochemical properties and potential antimicrobial activity. The possible antimicrobial mechanism of these types of nanoparticles will be discussed in-depth as well.

18.
J Hazard Mater ; 424(Pt A): 127294, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34592595

RESUMEN

Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792-30.0 MPa, varying the temperature (127-327 °C) and time (1-60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5 min) and high temperatures (above 277 °C), about 99% of HMWs were efficaciously converted to clean products by subcritical hydrothermal treatment. The results of hydrothermal extraction after 5 min indicated that at low temperatures (127-227 °C), the total organic carbon in the aqueous phase increased as the residual solid phase decreased, reaching a peak around 220 °C. Acetone soluble extracts or fat phase appeared above 227 °C and reached a maximum yield of 21% at 357 °C. Aspartic acid, threonine, and glycine were the primary amino acids; glycolic acid, formic acid, lactic acid, and acetic acid were obtained as the main organic acids, glucose, fructose, and cellobiose were substantial sugars produced from the aqueous phase after 5 min of hydrothermal subcritical hydrolysis extraction.


Asunto(s)
COVID-19 , Residuos Sanitarios , Purificación del Agua , Medicina de Hierbas , Humanos , Hidrólisis , Pandemias , SARS-CoV-2 , Temperatura
19.
Front Chem ; 10: 943003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105306

RESUMEN

In this study, two novel biomimetic modular peptide motifs based on the alpha-2 subunit of type IV collagen (CO4A2) were designed and immobilized on a graphene platform to imitate integrin and heparan sulfate- (HS-) binding proteins. The in silico study was used to design 9-mer K[KGDRGD]AG and 10-mer KK[SGDRGD]AG for testing designed Integrin-Binding Peptide (dIBP) and HS-Binding Peptide (dHBP). The virtual docking technique was used to optimize the peptide motifs and their relevant receptors. Molecular dynamic (MD) simulation was used to evaluate the stability of peptide-receptor complexes. The effect of the platform on the differentiation of human mesenchymal stem cells (hMSCs) to hepatic-like cells (HLCs) was evaluated. After differentiation, some hepatic cells' molecular markers such as albumin, AFP, CK-18, and CK-19 were successfully followed. Graphene-heparan sulfate binding peptide (G-HSBP) enhances the mature hepatic markers' expression instead of control (p ≤ 0.05). The pathological study showed that the designed platform is safe, and no adverse effects were seen till 21 days after implantation.

20.
Chemosphere ; 306: 135578, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35798154

RESUMEN

Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of critical importance. CaZnO-based nanoghosts (NGs) were synthesized with the assistance of a high-gravity technique at a 1,800 MHz field, capitalizing on the use of Rosmarinus officinalis leaf extract as the templating agent. A complete chemical, physical and biological investigation revealed that the synthesized NGs presented similar morphological features to the mesenchymal stem cells (MSCs), resulting in excellent biocompatibility, interaction with ssDNA- and/or pCRISPR-surface, through various chemical and physical mechanisms. This comprise the unprecedented synthesis of a fully inorganic nanostructure with behavior that is similar to MSCs. Furthermore, the endowed exceptional ability of inorganic NGs for detective sensing/folding of ssDNA and pCRISPR and recombinant SARS-CoV-2 spike antigen (RSCSA), along with in-situ hydrogen peroxide detection on the HEK-293 and HeLa cell lines, was discerned. On average, they displayed a high drug loading capacity of 55%, and the acceptable internalizations inside the HT-29 cell lines affirmed the anticipated MSCs-like behavior of these inorganic-NGs.


Asunto(s)
ADN de Cadena Simple , Doxorrubicina , Sistema de Administración de Fármacos con Nanopartículas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Calcio , ADN de Cadena Simple/análisis , Doxorrubicina/administración & dosificación , Células HEK293 , Células HeLa , Humanos , Glicoproteína de la Espiga del Coronavirus/análisis , Glicoproteína de la Espiga del Coronavirus/genética , Óxido de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA