Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 31(12): 5652-5663, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34184030

RESUMEN

Cortical interneurons born in the subpallium reach the cortex through tangential migration, whereas pyramidal cells reach their final position by radial migration. Purinergic signaling via P2Y1 receptors controls the migration of intermediate precursor cells from the ventricular zone to the subventricular zone. It was also reported that the blockade of A2A receptors (A2AR) controls the tangential migration of somatostatin+ interneurons. Here we found that A2AR control radial migration of cortical projection neurons. In A2AR-knockout (KO) mouse embryos or naïve mouse embryos exposed to an A2AR antagonist, we observed an accumulation of early-born migrating neurons in the lower intermediate zone at late embryogenesis. In utero knockdown of A2AR also caused an accumulation of neurons at the lower intermediate zone before birth. This entails the presently identified ability of A2AR to promote multipolar-bipolar transition and axon formation, critical for the transition of migrating neurons from the intermediate zone to the cortical plate. This effect seems to require extracellular ATP-derived adenosine since a similar accumulation of neurons at the lower intermediate zone was observed in mice lacking ecto-5'-nucleotidase (CD73-KO). These findings frame adenosine as a fine-tune regulator of the wiring of cortical inhibitory and excitatory networks.


Asunto(s)
Neuronas , Receptor de Adenosina A2A , Animales , Axones , Movimiento Celular/fisiología , Interneuronas , Ratones , Neuronas/fisiología , Células Piramidales/fisiología , Receptor de Adenosina A2A/genética
2.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36142422

RESUMEN

Theobromine is a caffeine metabolite most abundant in dark chocolate, of which consumption is linked with a lower risk of cognitive decline. However, the mechanisms through which theobromine affects neuronal function remain ill-defined. Using electrophysiological recordings in mouse hippocampal synapses, we now characterized the impact of a realistic concentration of theobromine on synaptic transmission and plasticity. Theobromine (30 µM) facilitated synaptic transmission while decreasing the magnitude of long-term potentiation (LTP), with both effects being blunted by adenosine deaminase (2 U/mL). The pharmacological blockade of A1R with DPCPX (100 nM) eliminated the theobromine-dependent facilitation of synaptic transmission, whereas the A2AR antagonist SCH58261 (50 nM), as well as the genetic deletion of A2AR, abrogated the theobromine-induced impairment of LTP. Furthermore, theobromine prevented LTP deficits and neuronal loss, respectively, in mouse hippocampal slices and neuronal cultures exposed to Aß1-42 peptides, considered a culprit of Alzheimer's disease. Overall, these results indicate that theobromine affects information flow via the antagonism of adenosine receptors, normalizing synaptic plasticity and affording neuroprotection in dementia-related conditions in a manner similar to caffeine.


Asunto(s)
Adenosina Desaminasa , Cafeína , Adenosina Desaminasa/metabolismo , Animales , Cafeína/metabolismo , Cafeína/farmacología , Hipocampo/metabolismo , Ratones , Plasticidad Neuronal , Receptor de Adenosina A2A/metabolismo , Sinapsis/metabolismo , Teobromina/farmacología
3.
Sci Rep ; 12(1): 14690, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038626

RESUMEN

The molecular mechanisms underlying circuit re-wiring in the mature brain remains ill-defined. An eloquent example of adult circuit remodelling is the hippocampal mossy fiber (MF) sprouting found in diseases such as temporal lobe epilepsy. The molecular determinants underlying this retrograde re-wiring remain unclear. This may involve signaling system(s) controlling axon specification/growth during neurodevelopment reactivated during epileptogenesis. Since adenosine A2A receptors (A2AR) control axon formation/outgrowth and synapse stabilization during development, we now examined the contribution of A2AR to MF sprouting. A2AR blockade significantly attenuated status epilepticus(SE)-induced MF sprouting in a rat pilocarpine model. This involves A2AR located in dentate granule cells since their knockdown selectively in dentate granule cells reduced MF sprouting, most likely through the ability of A2AR to induce the formation/outgrowth of abnormal secondary axons found in rat hippocampal neurons. These A2AR should be activated by extracellular ATP-derived adenosine since a similar prevention/attenuation of SE-induced hippocampal MF sprouting was observed in CD73 knockout mice. These findings demonstrate that A2AR contribute to epilepsy-related MF sprouting, most likely through the reactivation of the ability of A2AR to control axon formation/outgrowth observed during neurodevelopment. These results frame the CD73-A2AR axis as a regulator of circuit remodeling in the mature brain.


Asunto(s)
Adenosina , Epilepsia del Lóbulo Temporal , Receptor de Adenosina A2A/metabolismo , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Ratones , Fibras Musgosas del Hipocampo , Pilocarpina/farmacología , Ratas , Sinapsis/fisiología
4.
Science ; 374(6568): eabk2055, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34735259

RESUMEN

During development, neural circuit formation requires the stabilization of active γ-aminobutyric acid­mediated (GABAergic) synapses and the elimination of inactive ones. Here, we demonstrate that, although the activation of postsynaptic GABA type A receptors (GABAARs) and adenosine A2A receptors (A2ARs) stabilizes GABAergic synapses, only A2AR activation is sufficient. Both GABAAR- and A2AR-dependent signaling pathways act synergistically to produce adenosine 3',5'-monophosphate through the recruitment of the calcium­calmodulin­adenylyl cyclase pathway. Protein kinase A, thus activated, phosphorylates gephyrin on serine residue 303, which is required for GABAAR stabilization. Finally, the stabilization of pre- and postsynaptic GABAergic elements involves the interaction between gephyrin and the synaptogenic membrane protein Slitrk3. We propose that A2ARs act as detectors of active GABAergic synapses releasing GABA, adenosine triphosphate, and adenosine to regulate their fate toward stabilization or elimination.


Asunto(s)
Adenosina/metabolismo , Hipocampo/crecimiento & desarrollo , Neuronas/fisiología , Receptor de Adenosina A2A/metabolismo , Transducción de Señal , Sinapsis/fisiología , Ácido gamma-Aminobutírico/metabolismo , Antagonistas del Receptor de Adenosina A2 , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Cognición , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso , Fosforilación , Receptor de Adenosina A2A/genética , Receptores de GABA-A/metabolismo
5.
Syst Biol Reprod Med ; 59(4): 223-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23631693

RESUMEN

The human ejaculate contains subpopulations of sperm with distinct properties. Human X- and Y-bearing sperm were separated with fluorescence activated cell sorting. To avoid the use of UV light the quantitative DNA dyes DRAQ5® and Dyecycle™ Vybrant® Violet were used. Sorting efficiency was similar for both dyes, but lower than what is usually obtained with the classical method involving Hoechst 33342 and UV light (60-70% enrichment, versus 80-90%). A total of 2,739 spermatozoa were evaluated, from seven distinct samples using fluorescence in situ hybridization (FISH) chromosomal probes. No differences were found in sorted and unsorted populations in terms of chromosome positioning, and numeric chromosomal anomalies were not more evident following cell sorting. Furthermore in both sorted and unsorted populations the sex chromosomes were clearly located in the anterior portion of the sperm head, while a control autosome (chromosome 18) showed no such tendency, confirming previous findings. These results suggest that other quantitative DNA dyes may be used for sex chromosome-based human sperm sorting, but with lower efficiency than the standard UV-Hoechst based assay.


Asunto(s)
Cromosomas Humanos X/ultraestructura , Cromosomas Humanos Y/ultraestructura , Citometría de Flujo/métodos , Cabeza del Espermatozoide/ultraestructura , Espermatozoides/citología , Antraquinonas , Separación Celular/métodos , Colorantes , Humanos , Hibridación Fluorescente in Situ , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA