RESUMEN
Accumulation of excess iron in the body, or systemic iron overload, results from a variety of causes. The concentration of iron in the liver is linearly related to the total body iron stores and, for this reason, quantification of liver iron concentration (LIC) is widely regarded as the best surrogate to assess total body iron. Historically assessed using biopsy, there is a clear need for noninvasive quantitative imaging biomarkers of LIC. MRI is highly sensitive to the presence of tissue iron and has been increasingly adopted as a noninvasive alternative to biopsy for detection, severity grading, and treatment monitoring in patients with known or suspected iron overload. Multiple MRI strategies have been developed in the past 2 decades, based on both gradient-echo and spin-echo imaging, including signal intensity ratio and relaxometry strategies. However, there is a general lack of consensus regarding the appropriate use of these methods. The overall goal of this article is to summarize the current state of the art in the clinical use of MRI to quantify liver iron content and to assess the overall level of evidence of these various methods. Based on this summary, expert consensus panel recommendations on best practices for MRI-based quantification of liver iron are provided.
Asunto(s)
Sobrecarga de Hierro , Hígado , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Sobrecarga de Hierro/diagnóstico por imagen , Sobrecarga de Hierro/patología , Imagen por Resonancia Magnética/métodos , Hierro , BiopsiaRESUMEN
PURPOSE: The objectives were (i) construction of a phantom to reproduce the behavior of iron overload in the liver by MRI and (ii) assessment of the variability of a previously validated method to quantify liver iron concentration between different MRI devices using the phantom and patients. MATERIALS AND METHODS: A phantom reproducing the liver/muscle ratios of two patients with intermediate and high iron overload. Nine patients with different levels of iron overload were studied in 4 multivendor devices and 8 of them were studied twice in the machine where the model was developed. The phantom was analysed in the same equipment and 14 times in the reference machine. RESULTS: FeCl3 solutions containing 0.3, 0.5, 0.6, and 1.2 mg Fe/mL were chosen to generate the phantom. The average of the intramachine variability for patients was 10% and for the intermachines 8%. For the phantom the intramachine coefficient of variation was always below 0.1 and the average of intermachine variability was 10% for moderate and 5% for high iron overload. CONCLUSION: The phantom reproduces the behavior of patients with moderate or high iron overload. The proposed method of calculating liver iron concentration is reproducible in several different 1.5 T systems.