RESUMEN
The impact of pH, temperature, and metal ions on the rheological and interfacial properties of aqueous mixed surfactant solutions composed of anionic NaC (sodium cholate) and nonionic BrijL4 [polyoxyethylene (4) lauryl ether] surfactants has been investigated. The various compound systems were analyzed, considering variations in each selected factor. The results highlight the unique characteristics of the BrijL4/NaC mixture, suggesting its potential as a viable alternative to other existing surfactants. The synergistic effect between BrijL4 and NaC significantly reduces the critical micelle concentration (CMC) and improves the wetting properties on hydrophobic surfaces, surpassing those of single-component solutions. Additionally, sodium, calcium, and magnesium ions enhance surface wetting and decrease the CMC. Besides, the BrijL4/NaC solutions exhibit viscoelastic fluid behavior at higher surfactant concentrations. These viscoelastic BrijL4/NaC solutions demonstrate stability over various pH and temperature variations, exhibiting lower flow activation and scission energy values than those of other viscoelastic surfactant solutions. Notably, the BrijL4/NaC mixture has potential applications in gel-based foliar fertilizers and drug delivery systems. Furthermore, the rheological studies examine the impact of humic acid on the rheological properties of BrijL4/NaC mixture solutions, revealing that incorporating additional humic acids can achieve stable rheological properties.
RESUMEN
Breath figure imprinting, based on surface instabilities combined with fast polymer evaporation in a humid environment, enables the creation of micro-patterned membranes with tailored pore sizes. Despite being a simple procedure, it is still challenging to fully understand the dynamics behind the formation of hierarchical structuring. In this work, we used the breath figure technique to prepare porous PLA-based (polylactic acid) membranes with two distinctive additives, polyvinylidene fluoride (PVDF) and zinc oxide nanoparticles (ZnO NPs). The selection of these additives was governed by their unique properties and the potential synergistic effects; when blended with PLA, the addition of NPs leads to more uniform structures with tunable characteristics and potential multifunctionality. This article sheds light on the multifaced interactions that intricate the interplays between PLA, PVDF, and ZnO, thus governing their assembly. Through a comprehensive investigation, we scrutinize the impact of blending PVDF and different concentrations of ZnO NPs on the morphology and chemical properties of the final self-assembled PLA membranes while presenting an advanced understanding of the potential applications of PLA-self-assembly porous membranes in various industrial sectors.
RESUMEN
Lithium-ion batteries (LIBs) have significantly impacted the daily lives, finding broad applications in various industries such as consumer electronics, electric vehicles, medical devices, aerospace, and power tools. However, they still face issues (i.e., safety due to dendrite propagation, manufacturing cost, random porosities, and basic & planar geometries) that hinder their widespread applications as the demand for LIBs rapidly increases in all sectors due to their high energy and power density values compared to other batteries. Additive manufacturing (AM) is a promising technique for creating precise and programmable structures in energy storage devices. This review first summarizes light, filament, powder, and jetting-based 3D printing methods with the status on current trends and limitations for each AM technology. The paper also delves into 3D printing-enabled electrodes (both anodes and cathodes) and solid-state electrolytes for LIBs, emphasizing the current state-of-the-art materials, manufacturing methods, and properties/performance. Additionally, the current challenges in the AM for electrochemical energy storage (EES) applications, including limited materials, low processing precision, codesign/comanufacturing concepts for complete battery printing, machine learning (ML)/artificial intelligence (AI) for processing optimization and data analysis, environmental risks, and the potential of 4D printing in advanced battery applications, are also presented.
RESUMEN
Simple, portable, and low-cost paper-based sensors are alternative devices that have the potential to replace high-cost sensing technologies. The compatibility of the paper base biosensors for both chemical and biochemical accentuates its feasibility for application in clinical diagnosis, environmental monitoring, and food quality monitoring. High concentration of copper in blood serum and urine is associated with diseases like liver diseases, carcinomas, acute and chronic infections, rheumatoid arthritis, etc. Detection of copper concentration can give an early sign of Alzheimer disease. Apart from that genetic Wilson's disease can be detected by evaluating the concentration of copper in the urine. In view of the above advantages, a novel and the highly sensitive paper-based sensor has been designed for the selective detection of Cu2+ ions. The fast and highly sensitive chemiresistive multi-dye system sensor can detect Cu2+ ions selectively in as low as 2.23 ppm concentration. Least interference has been observed for counter ion in the detection of Cu2+. Copper chloride, nitrate, and acetate were used to validate the detection process. This assay provides a very high selectivity of Cu2+ ion over other metal cations such as Na+, Mg2+, Ca2+, etc. The easy preparation and high stability of dye solutions, easy functionalization of the paper-based sensors, high selectivity over other cations, low interference of counter anion, and significantly low detection limit of 2.23 ppm make it an effective Cu2+ ion sensor for real-time application in near future.
Asunto(s)
Cobre , Metales , CationesRESUMEN
Unconventional treatments can provide a modification to convert ash waste into valuable materials that can be used in various applications. This study focuses on bottom ash (BA) collected from a local incineration plant and characterizes its chemical composition before and after pretreatment by coating with polymers. The toxicity-characteristic leaching procedure (TCLP) was used to identify selected heavy metal leaching after treatment with vinyl-terminated polydimethylsiloxane (PDMS) of different molecular weights. BA coatings were incorporated in two ratios, 0.5% and 1%, by milling to avoid heavy metal leaching. The results showed that all the coating batches had reduced concentrations of copper (Cu), manganese (Mn), and zinc (Zn), whereas the concentrations of chromium (Cr) and cadmium (Cd) showed higher amounts of BAV34 (0.5%) and BAV25 (1%). The treated BA with GP demonstrated percentages of reduction of 70%, 65%, 80%, 75%, 90%, and 80% for Cu, Mn, Ni, Zn, Pb, and Cd, respectively. The milling procedure reduced the particle size of the coated ash. Hydrophobicity was observed in all coating batches compared to untreated BA. The thermogravimetric analysis (TGA) results showed variations between BA and treated BA, which confirmed that PDMS caused surface modification. These features have potential significance for extending the use of coated ash as a sustainable material for construction applications.
Asunto(s)
Metales Pesados , Eliminación de Residuos , Incineración , Residuos Sólidos/análisis , Ceniza del Carbón , Cadmio , Metales Pesados/química , Zinc/análisis , Manganeso/análisis , Eliminación de Residuos/métodosRESUMEN
Perfluorooctanoic acid is an emerging pollutant with exceptional resistance to degradation and detrimental environmental and health impacts. Conventional physical and chemical processes for Perfluorooctanoic acid are either expensive or inefficient. This study developed an environmentally sustainable and cost-effective gravity-driven kappa-carrageenan (kC)-based hydrogel for perfluorooctanoic acid (PFOA) removal from synthetic and actual wastewater. Two kC filters were prepared by mixing activated carbon (AC) or vanillin (V) with the kC hydrogel to optimize the hydrogel selectivity and water permeability. Experimental work revealed that the PFOA rejection and water permeability increased with the AC and V concentrations in the kC hydrogel. Experiments also evaluated the impact of feed pH, PFOA concentration, hydrogel composition, and hydrogel thickness on its performance. Due to pore size shrinkage, the AC-kC and V-kC hydrogels achieved the highest PFOA rejection at pH 4, whereas the water flux decreased. Increasing the PFOA concentration reduced water flux and increased PFOA rejection. For 2 cm hydrogel thickness, the water flux of 3%kC-0.3%AC and 3%kC-3%V hydrogels was 25.6 LMH and 21.5 LMH, and the corresponding PFOA rejection was 86.9% for 3%kC-0.3%AC and 85.7% for 3%kC-3%V. Finally, the kC-0.3%AC hydrogel removed 81.1% of PFOA from wastewater of 179 mg/L initial concentration compared to 79.3% for the kC-3%V hydrogel. After three filtration cycles, the water flux decline of 3%kC-0.3%AC was less than 10%. The gravity dead-end kC hydrogel provides sustainable PFOA wastewater treatment with biodegradable and natural materials.
Asunto(s)
Caprilatos , Carragenina , Fluorocarburos , Hidrogeles , Aguas Residuales , Contaminantes Químicos del Agua , Caprilatos/química , Caprilatos/análisis , Aguas Residuales/química , Hidrogeles/química , Carragenina/química , Fluorocarburos/química , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Restauración y Remediación Ambiental/métodos , Eliminación de Residuos Líquidos/métodos , Suelo/química , Purificación del Agua/métodosRESUMEN
Iron oxide magnetic nanoparticles (MNPs) are crucial in various areas due to their unique magnetic properties. However, their practical use is often limited by instability and aggregation in aqueous solutions. This review explores the advanced technique of dendrimer functionalization to enhance MNP stability and expand their application potential. Dendrimers, with their symmetric and highly branched structure, effectively stabilize MNPs and provide tailored functional sites for specific applications. We summarize key synthetic modifications, focusing on the impacts of dendrimer size, surface chemistry, and the balance of chemical (e.g., coordination, anchoring) and physical (e.g., electrostatic, hydrophobic) interactions on nanocomposite properties. Current challenges such as dendrimer toxicity, control over dendrimer distribution on MNPs, and the need for biocompatibility are discussed, alongside potential solutions involving advanced characterization techniques. This review highlights significant opportunities in environmental, biomedical, and water treatment applications, stressing the necessity for ongoing research to fully leverage dendrimer-functionalized MNPs. Insights offered here aim to guide further development and application of these promising nanocomposites.
RESUMEN
The electrokinetic process has been proposed for in-situ soil remediation to minimize excavation work and exposure to hazardous materials. The precipitation of heavy metals in alkaline pH near the cathode is still challenging. Reactive filter media and enhancement agents have been used in electrokinetics to enhance the removal of heavy metals. This study investigated coupling industrial iron slag waste and iron slag-activated carbon reactive filter media with electrokinetic for a single and mixture of heavy metals treatment. Instead of using acid enhancement agents, the anolyte solution was recycled to neutralize the alkaline front at the cathode, reducing the operation cost and chemical use. Experiments were conducted for 2 and 3 weeks at 20 mA electric current. Copper removal increased from 3.11 % to 23 % when iron slag reactive filter media was coupled with electrokinetic. Copper removal increased to 70.14 % in the electrokinetic experiment with iron slag-activated carbon reactive filter media. The copper removal increased to 89.21 % when the anolyte solution was recycled to the cathode compartment. Copper removal reached 93.45 % when the reactive filter media-electrokinetic process with anolyte recirculation was extended to 3 weeks. The reactive filter media- an electrokinetic process with anolyte recycling was evaluated for removing copper, nickel, and zinc mixture, and results revealed 81.1 % copper removal, 89.04 % nickel removal, and 92.31 % zinc removal in a 3-week experiment. The greater nickel and zinc removal is attributed to their higher solubility than copper. The results demonstrated the cost-effectiveness and efficiency of the electrokinetic with iron slag-activated carbon reactive filter media with anolyte recirculation for soil remediation from heavy metals.
RESUMEN
Nanocellulose (NC), a one-dimensional nanomaterial, is considered a sustainable material for water and wastewater purification because of its promising hydrophilic surface and mechanical characteristics. In this regard, nanostructured membranes comprising NC and two-dimensional (2D) nanomaterials emerged as advanced membranes for efficient and sustainable water purification. This article critically reviews the recent progress on NC-2D nanostructured membranes for water and wastewater treatment. The review highlights the main techniques employed to fabricate NC-2D nanostructured membranes. The physicochemical properties, including hydrophilicity, percent porosity, surface roughness, structure, and mechanical and thermal stability, are summarized. The key performance indicators such as permeability, rejection, long operation stability, antifouling, and interaction mechanisms are thoroughly discussed to evaluate the role of NC and 2D nanomaterials. Finally, summary points and future development work are highlighted to overcome the challenges for potential practical applications. This review contributes to the design and development of advanced membranes to solve growing water pollution concerns in a sustainable manner.
RESUMEN
In this work, polyvinylidene fluoride (PVDF) intercalated CuFe layered double hydroxides (LDH) membranes were fabricated and investigated for UV-LED/persulfate degradation of methylene blue (MB), crystal violet (CV), methyl orange (MO), and Eriochrome black T (EBT) dyes from water. The PVDF-CuFe membrane exhibited improved heterogeneity, surface functionality (CuO, Fe-O, Cu-O-Fe), surface roughness, and hydrophilicity. The process parameters were optimized by response surface methodology, and maximum MB removal (100%) was achieved within 45.22-178.5 min at MB concentration (29.45-101.93 mg/L), PP concentration (0.5-2.41 g/L) and catalyst dosage (1.84-1.95 g/L). The degradation kinetics was well described by a pseudo-first-order model (R2 = 0.982) and fast reaction rate (0.029-0.089/min). The MB dye degradation mechanism is associated with HO·/SO4â¢- reactive species generated by Fe3+/Fe2+ or Cu2+/Cu+ in PVDF-CuFe membrane and PP dissociation. The PVDF-CuFe membrane demonstrated excellent recyclability performance with a 12% reduction after five consecutive cycles. The catalytic membrane showed excellent photocatalytic degradation of crystal violet (100%), methyl orange (79%), and Eriochrome black T (60%). The results showed that UV-LED/persulfate-assisted PVDF-CuFe membranes can be used as a recyclable catalyst for the effective degradation of dye-contaminated water streams.
Asunto(s)
Compuestos Azo , Colorantes , Hidróxidos , Azul de Metileno , Polivinilos , Contaminantes Químicos del Agua , Colorantes/química , Contaminantes Químicos del Agua/química , Hidróxidos/química , Compuestos Azo/química , Catálisis , Azul de Metileno/química , Polivinilos/química , Violeta de Genciana/química , Cinética , Purificación del Agua/métodos , Cobre/química , Restauración y Remediación Ambiental/métodos , Polímeros de FluorocarbonoRESUMEN
Plastics' long degradation time and their role in adding millions of metric tons of plastic waste to our oceans annually present an acute environmental challenge. Handling end-of-life waste from wind turbine blades (WTBs) is equally pressing. Currently, WTB waste often finds its way into landfills, emphasizing the need for recycling and sustainable solutions. Mechanical recycling of composite WTB presents an avenue for the recovery of glass fibers (GF) for repurposing as fillers or reinforcements. The resulting composite materials exhibit improved properties compared to the pure PAN polymer. Through the employment of the dry-jet wet spinning technique, we have successfully manufactured PAN/GF coaxial-layered fibers with a 0.1 wt % GF content in the middle layer. These fibers demonstrate enhanced mechanical properties and a lightweight nature. Most notably, the composite fiber demonstrates a significant 24.4% increase in strength and a 17.7% increase in modulus. These fibers hold vast potential for various industrial applications, particularly in the production of structural components (e.g., electric vehicles), contributing to enhanced performance and energy efficiency.
RESUMEN
Biopolymer-based hydrogels have several advantages, including robust mechanical tunability, high biocompatibility, and excellent optical properties. These hydrogels can be ideal wound dressing materials and advantageous to repair and regenerate skin wounds. In this work, we prepared composite hydrogels by blending gelatin and graphene oxide-functionalized bacterial cellulose (GO-f-BC) with tetraethyl orthosilicate (TEOS). The hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscope (AFM), and water contact angle analyses to explore functional groups and their interactions, surface morphology, and wetting behavior, respectively. The swelling, biodegradation, and water retention were tested to respond to the biofluid. Maximum swelling was exhibited by GBG-1 (0.01 mg GO amount) in all media (aqueous = 1902.83%, PBS = 1546.63%, and electrolyte = 1367.32%). All hydrogels were hemocompatible, as their hemolysis was less than 0.5%, and blood coagulation time decreased as the hydrogel concentration and GO amount increased under in vitro standard conditions. These hydrogels exhibited unusual antimicrobial activities against Gram-positive and Gram-negative bacterial strains. The cell viability and proliferation were increased with an increased GO amount, and maximum values were found for GBG-4 (0.04 mg GO amount) against fibroblast (3T3) cell lines. The mature and well-adhered cell morphology of 3T3 cells was found for all hydrogel samples. Based on all findings, these hydrogels would be a potential wound dressing skin material for wound healing applications.
RESUMEN
Antibiotic-contaminated water is a crucial issue worldwide. Thus, in this study, the MgFeCa-layered double hydroxides were supported in date palm-derived biochar (B) using co-precipitation, hydrothermal, and co-pyrolysis methods. It closes gaps in composite design for pharmaceutical pollutant removal, advances eco-friendly adsorbents, and advances targeted water cleanup by investigating synthesis methodologies and gaining new insights into adsorption. The prepared B-MgFeCa composites were investigated for tetracycline (TC) adsorption from an aqueous solution. The B-MgFeCa composites synthesized through co-precipitation and hydrothermal methods exhibited better crystallinity, functional groups, and well-developed LDH structure within the biochar matrix. However, the co-pyrolysis method resulted in the LDH structure breakage, leading to the low crystalline composite material. The maximum adsorption of TC onto all B-MgFeCa was obtained at an acidic pH range (4-5). The B-MgFeCa composites produced via hydrothermal and co-pyrolysis methods showed higher and faster TC adsorption than the co-precipitation method. The kinetic results can be better described by Langmuir kinetic and mixed order models at low and high TC concentrations, indicating that the rate-limiting step is mainly associated with active binding sites adsorption. The Sip and Freundlich models showed better fitting with the equilibrium data. The TC removal by B-MgFeCa composites prepared via hydrothermal, the highest estimated uptake which is around 639.76 mg.g-1 according to the Sips model at ambient conditions, and co-pyrolysis was mainly dominated by physical and chemical interactions. The composite obtained via the co-precipitation method adsorbed TC through chemical bonding between surface functional groups with anionic species of TC molecule. The B-MgFeCa composite showed excellent reusability performance for up to five cycles with only a 30% decrease in TC removal efficiency. The results demonstrated that B-MgFeCa composites could be used as promising adsorbent materials for effective wastewater treatment.
Asunto(s)
Contaminantes Químicos del Agua , Agua , Adsorción , Contaminantes Químicos del Agua/análisis , Tetraciclina/química , Antibacterianos , Carbón Orgánico/química , Hidróxidos/química , CinéticaRESUMEN
Carbon dots and their derivatives with fascinating photoluminescence properties have recently attracted tremendous scientific attention. This work describes the preparation of novel fluorescent bentonite clay (B), modified with carbon dot nanomaterials (CDs), and its usage as a lead removal platform. The CDs were prepared using a hydrothermal method from graphitic waste which served as the carbon source material. The as-obtained CDs were found to be fluorescent, being spherical in shape, positively charged, and smaller than 5 nm. Encouraged by their structure and photoluminescence features, they were used as surface modifiers to make fluorescent bentonite nanocomposites. Bentonite was used as a negatively charged model of aluminosilicate and reacted with the positively charged CDs. XRD, FTIR, XPS, and fluorescence analysis were used to characterize the prepared materials. The results indicate that the CDs intercalated inside the bentonite matrix were stable with excellent optical properties over time. They were finally used as an efficient hybrid platform for lead removal with a removal efficiency of 95% under light conditions, at room temperature, in an alkaline medium, and after only 10 min of reaction, compared to 70% under dark conditions. The pseudo-second-order kinetics and Langmuir isotherm models were better fitted to describe the adsorption process. The maximum adsorption capacity was equal to 400 mg g-1 toward Pb(ii) removal, at room temperature and pH = 8, under light conditions. To summarize, we have designed UV light stimuli responsive carbon dot-intercalated clay with high Pb(ii) adsorption capacity and long-term stability.
RESUMEN
Rational design of metal single-site embedded porous graphitic carbon nitride (P-g-C3N4) nanostructures exploiting maximum atom utilization is warranted to enhance the thermal CO oxidation (COOx) reaction. Herein, a facile, green, one-pot, and template-free approach is developed to fabricate the hierarchical porous P-g-C3N4-crumpled ultrathin nanosheets atomically doped with copper single atoms (Cu-P-g-C3N4). Mechanistically, the quick protonation of melamine and pyridine under acidic conditions induces deamination to form melem, which is polycondensed under heating. The interconnected pores, high surface area (240 m2g-1), and maximized exposed isolated Cu atomic active sites (1.8 wt %) coordinated with nitrogen atom P-g-C3N4 are the salient features of Cu- P-g-C3N4 that endowed complete conversion to CO2 at 184 °C. In contrast, P-g-C3N4 only converted 3.8% of CO even at 350 °C, implying the electronic effect of Cu single atoms. The abundant Cu-nitrogen moieties can drastically weaken the binding affinity of the CO-oxidation (COOx) intermediates and products, thus accelerating the reaction kinetics at a low temperature. This study may promote the fabrication of P-g-C3N4 doped with various single atoms for the oxidation of CO.
RESUMEN
Zinc oxide engineered nanomaterials (ZnO ENMs) are used in a variety of applications worldwide due to their optoelectronic and antibacterial properties with potential contaminant risk to the environment following their disposal. One of the main potential pathways for ZnO nanomaterials to reach the environment is via urban wastewater treatment plants. So far there is no technique that can provide spatiotemporal nanoscale information about the rates and mechanisms by which the individual nanoparticles transform. Fundamental knowledge of how the surface chemistry of individual particles change, and the heterogeneity of transformations within the system, will reveal the critical physicochemical properties determining environmental damage and deactivation. We applied a methodology based on spatially resolved in situ X-ray fluorescence microscopy (XFM), allowing observation of real-time dissolution and morphological and chemical evolution of synthetic template-grown ZnO nanorods (â¼725 nm length, â¼140 nm diameter). Core-shell ZnO-ZnS nanostructures were formed rapidly within 1 h, and significant amounts of ZnS species were generated, with a corresponding depletion of ZnO after 3 h. Diffuse nanoparticles of ZnS, Zn3(PO4)2, and Zn adsorbed to Fe-oxyhydroxides were also imaged in some nonsterically impeded regions after 3 h. The formation of diffuse nanoparticles was affected by ongoing ZnO dissolution (quantified by inductively coupled plasma mass spectrometry) and the humic acid content in the simulated sludge. Complementary ex situ X-ray absorption spectroscopy and scanning electron microscopy confirmed a significant decrease in the ZnO contribution over time. Application of time-resolved XFM enables predictions about the rates at which ZnO nanomaterials transform during their first stages of the wastewater treatment process.
RESUMEN
Mycobacterium tuberculosis ( M.tb) has the extraordinary ability to adapt to the administration of antibiotics through the development of resistance mechanisms. By rapidly exporting drugs from within the cytosol, these pathogenic bacteria diminish antibiotic potency and drive the presentation of drug-tolerant tuberculosis (TB). The membrane integrity of M.tb is pivotal in retaining these drug-resistant traits. Silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs) are established antimicrobial agents that effectively compromise membrane stability, giving rise to increased bacterial permeability to antibiotics. In this work, biodegradable multimetallic microparticles (MMPs), containing Ag NPs and ZnO NPs, were developed for use in pulmonary delivery of antituberculous drugs to the endosomal system of M.tb-infected macrophages. Efficient uptake of MMPs by M.tb-infected THP1 cells was demonstrated using an in vitro macrophage infection model, with direct interaction between MMPs and M.tb visualized with the use of electron FIB-SEM tomography. The release of Ag NPs and ZnO NPs within the macrophage endosomal system increased the potency of the model antibiotic rifampicin by as much as 76%, realized through an increase in membrane disorder of intracellular M.tb. MMPs were effective at independently driving membrane destruction of extracellular bacilli located at the exterior face of THP1 macrophages. This MMP system presents as an effective drug delivery vehicle that could be used for the transport of antituberculous drugs such as rifampicin to infected alveolar macrophages, while increasing drug potency. By increasing M.tb membrane permeability, such a system may prove effectual in improving treatment of drug-susceptible TB in addition to M.tb strains considered drug-resistant.
Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Nanopartículas/química , Rifampin/farmacología , Plata/química , Óxido de Zinc/química , Antituberculosos/química , Línea Celular , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Macrófagos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/citología , Rifampin/química , Relación Estructura-Actividad , Óxido de Zinc/síntesis químicaRESUMEN
Fullerene-containing materials have the ability to store and release electrical energy. Therefore, fullerenes may ultimately find use in high-voltage equipment devices or as super capacitors for high electric energy storage due to this ease of manipulating their excellent dielectric properties and their high volume resistivity. A series of structured fullerene (C60) polymer nanocomposites were assembled using the thiol-ene click reaction, between alkyl thiols and allyl functionalized C60 derivatives. The resulting high-density C60-urethane-thiol-ene (C60-Thiol-Ene) networks possessed excellent mechanical properties. These novel networks were characterized using standard techniques, including infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermal gravimetric analysis (TGA). The dielectric spectra for the prepared samples were determined over a broad frequency range at room temperature using a broadband dielectric spectrometer and a semiconductor characterization system. The changes in thermo-mechanical and electrical properties of these novel fullerene-thiol-ene composite films were measured as a function of the C60 content, and samples characterized by high dielectric permittivity and low dielectric loss were produced. In this process, variations in chemical composition of the networks were correlated to performance characteristics.