Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metab Brain Dis ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115642

RESUMEN

The simultaneous hyperexcitability of the neural network is the most well-known manifestation of epilepsy that causes recurrent seizures. The current study was aimed to examine any potential safety benefits of the culture filtrate of Trichoderma harzianum (ThCF) to ameliorate damaged histoarchitecture of the brain in epileptic rats by assessing seizure intensity scale and behavioral impairments and follow up the spontaneous motor seizures during status epilepticus phases in rats. Twenty-four rats were divided into four groups; control (C), epileptic (EP) valproic acid-treated epileptic (EP-VPA), and epileptic treated with T. harzianum cultured filtrate (ThCF). In addition to a seizure intensity score and behavioral tests, routine H&E and Golgi-Copsch histopathology, were used to examine the cell somas, dendrites, axons, and neural spines. ThCF treatment increased activity and recorded movements during grooming, rearing, and ambulation frequency. Brain tissues of epileptic rats exhibited detached meninges, hypercellularity, mild edema in the cortex and markedly degenerated neurons, degenerated glial cells, and microcyst formation in the hippocampus. Moreover, brains of EP-ThCF were noticed with average blood vessels, and increased dendritogenesis. The current data revealed some of negative effects of epileptogenesis brought on by seizure intensity score and retarded histopathological alterations in the hippocampus. Therefore, the study is forecasting to identify novel active components from the metabolites of T. harzianum with a crucial therapeutic role in various disorders.

2.
Vet Med (Praha) ; 67(4): 179-189, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39170808

RESUMEN

The present study was undertaken to investigate the possible stimulating effects of Nigella sativa (N. sativa) honey, natural Saudi Sider honey, and honeybee pollen to the in vitro maturation (IVM) medium of sheep oocytes on their subsequent development. Hence, immature oocytes were exposed to various concentrations of natural Nigella sativa (N. sativa), and Saudi Sider honey (5, 10, and 20%), as well as honeybee pollen (1, 10, 50 µg/ml) during an in vitro maturation period (24 hours). After the exposure time, the maturation rate, glutathione (GSH) concentration, and candidate gene expression (GDF-9, MPF, CMOS, IGF-1, and BAX) were evaluated. Our results showed that the maturation rate was higher in the groups challenged with the lowest level of the bee products (5% and 1 µg/ml) when compared with that in the control group; where the mean number of oocytes in the metaphase II stage reached 0.360 for the honeybee pollen-treated group, 0.293 for the N. sativa-treated group, and 0.203 for the natural Saudi Sider honey-treated group. The glutathione level was significantly increased in the group exposed to N. sativa honey when compared with the other groups. Concerning the gene expression results, the Saudi Sider honey treatment showed the best results for all the genes except the CMOS gene, which was significantly higher than the GI and GII groups and lower than the GIV group and the BAX gene which did not show a significant difference when compared with the other groups. In conclusion, the addition of natural honey and honeybee pollen at a low concentration to an IVM medium improved the in vitro maturation rate, increased the glutathione level, and gene expression of the in vitro matured ovine oocytes.

3.
Biodivers Data J ; 12: e115845, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481856

RESUMEN

The migratory locust, Locustamigratoria (L.), a significant grasshopper species known for its ability to form large swarms and cause extensive damage to crops and vegetation, is subject to the influence of climate change. This research paper employs geographic information system (GIS) and MaxEnt ecological modelling techniques to assess the impact of climate change on the distribution patterns of L.migratoria. Occurrence data and environmental variables are collected and analysed to create predictive models for the current and future distribution of the species. The study highlights the crucial role of climate factors, particularly temperature and precipitation, in determining the locust's distribution. The MaxEnt models exhibit high-performance indicators, accurately predicting the potential habitat suitability of L.migratoria. Additionally, specific bioclimatic variables, such as mean temperature and annual precipitation, are identified as significant factors influencing the species' presence. The generated future maps indicate how this species will invade new regions especially in Europe. Such results predict the risk of this destructive species for many agriculture communities as a direct result of a warming world. The research provides valuable insights into the complex relationship between locust distribution and environmental factors, enabling the development of effective strategies for locust management and early warning systems to mitigate the impact on agriculture and ecosystems.

4.
PeerJ ; 12: e16870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563014

RESUMEN

The brinjal fruit and shoot borer (BFSB), Leucinodes orbonalis Guenée (Lepidoptera: Crambidae), is a very detrimental pest that causes significant economic losses to brinjal crop worldwide. Infested brinjal fruits were collected from vegetable fields located at the ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India, during two consecutive seasons (2021-2022). The larvae of the pest were brought to the laboratory and reared under controlled conditions of 25 ± 0.5 °C and 70 ± 5% relative humidity, for the emergence of parasitoids. In addition, the survey of Hymenoptera parasitoids in brinjal was conducted utilizing a sweep net and yellow pan trap over the course of two seasons. The results reveal that five parasitoid species were emerged from L. orbonalis viz., Apanteles hemara Nixon, 1965, Bracon greeni Ashmead 1896 (Hymenoptera: Braconidae), Goryphus nursei (Cameron, 1907), Trathala flavoorbitalis (Cameron, 1907) (Hymenoptera: Ichneumonidae) and Spalangia gemina Boucek 1963 (Hymenoptera: Spalangiidae). Out of these, A. hemara and S. gemina were documented as new occurrences in Delhi. Additionally, A. hemara was recorded for the first time as a parasite on L. orbonalis. Trathala flavoorbitalis was observed during both seasons and exhibited higher parasitism reaching 15.55% and 18.46% in July and August 2022, respectively. However, the average parasitism (%) recorded by A. hemara, B. greeni, G. nursei, T. flavoorbitalis and S. gemina was 3.10%, 1.76%, 1.10%, 9.28% and 1.20% respectively. Furthermore, the findings showed a significant (p ≤ 0.01) strongly positive correlation between fruit infestation (%) by L. orbonalis and parasitism (%). The survey indicates the presence of a broad group (19 families and 60 species) of Hymenoptera parasitoids in the brinjal crop ecosystem in Delhi which could be valuable in biological control. In light of these results, this study revealed that A. hemara and other parasitoids identified in this study alongside T. flavoorbitalis would be ideal biocontrol agents within the integrated pest management (IPM) program of BFSB in Delhi.


Asunto(s)
Himenópteros , Mariposas Nocturnas , Solanum melongena , Humanos , Animales , Solanum melongena/parasitología , Ecosistema , Complejo Hierro-Dextran , Mariposas Nocturnas/parasitología , Biodiversidad
5.
Plants (Basel) ; 13(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276766

RESUMEN

Sugar beet root rot disease triggered by Fusarium oxysporum f. sp. radicis-betae is a destructive disease and dramatically affects the production and quality of the sugar beet industry. Employing beneficial microorganisms as a biocontrol strategy represents an eco-friendly and sustainable approach to combat various plant diseases. The distinct aspect of this study was to assess the antifungal and plant growth-promoting capabilities of recently isolated Streptomyces to treat sugar beet plants against infection with the phytopathogen F. oxysporum. Thirty-seven actinobacterial isolates were recovered from the rhizosphere of healthy sugar beet plants and screened for their potential to antagonize F. oxysporum in vitro. Two isolates SB3-15 and SB2-23 that displayed higher antagonistic effects were morphologically and molecularly identified as Streptomyces spp. Seed treatment with the fermentation broth of the selected Streptomyces strains SB3-15 and SB2-23 significantly reduced disease severity compared to the infected control in a greenhouse experiment. Streptomyces SB2-23 exhibited the highest protective activity with high efficacy ranging from 91.06 to 94.77% compared to chemical fungicide (86.44 to 92.36%). Furthermore, strain SB2-23 significantly increased plant weight, root weight, root length, and diameter. Likewise, it improves sucrose percentage and juice purity. As a consequence, the strain SB2-23's intriguing biocontrol capability and sugar beet root growth stimulation present promising prospects for its utilization in both plant protection and enhancement strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA