Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36236533

RESUMEN

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, and hip joint angles, torques, and powers, as well as ground reaction forces (GRF). ML was able to classify those with and without PAD using Neural Networks or Random Forest algorithms with 89% accuracy (0.64 Matthew's Correlation Coefficient) using all laboratory-based gait variables. Moreover, models using only GRF variables provided up to 87% accuracy (0.64 Matthew's Correlation Coefficient). These results indicate that ML models can classify those with and without PAD using gait signatures with acceptable performance. Results also show that an ML gait signature model that uses GRF features delivers the most informative data for PAD classification.


Asunto(s)
Marcha , Enfermedad Arterial Periférica , Fenómenos Biomecánicos , Marcha/fisiología , Humanos , Aprendizaje Automático , Enfermedad Arterial Periférica/diagnóstico , Caminata
2.
Sensors (Basel) ; 20(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172192

RESUMEN

This work presents an approach to delay-based reservoir computing (RC) at the sensor level without input modulation. It employs a time-multiplexed bias to maintain transience while utilizing either an electrical signal or an environmental signal (such as acceleration) as an unmodulated input signal. The proposed approach enables RC carried out by sufficiently nonlinear sensory elements, as we demonstrate using a single electrostatically actuated microelectromechanical system (MEMS) device. The MEMS sensor can perform colocalized sensing and computing with fewer electronics than traditional RC elements at the RC input (such as analog-to-digital and digital-to-analog converters). The performance of the MEMS RC is evaluated experimentally using a simple classification task, in which the MEMS device differentiates between the profiles of two signal waveforms. The signal waveforms are chosen to be either electrical waveforms or acceleration waveforms. The classification accuracy of the presented MEMS RC scheme is found to be over 99%. Furthermore, the scheme is found to enable flexible virtual node probing rates, allowing for up to 4× slower probing rates, which relaxes the requirements on the system for reservoir signal sampling. Finally, our experiments show a noise-resistance capability for our MEMS RC scheme.

3.
Sci Rep ; 14(1): 1075, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212467

RESUMEN

This paper demonstrates the value of a framework for processing data on body acceleration as a uniquely valuable tool for diagnosing diseases that affect gait early. As a case study, we used this model to identify individuals with peripheral artery disease (PAD) and distinguish them from those without PAD. The framework uses acceleration data extracted from anatomical reflective markers placed in different body locations to train the diagnostic models and a wearable accelerometer carried at the waist for validation. Reflective marker data have been used for decades in studies evaluating and monitoring human gait. They are widely available for many body parts but are obtained in specialized laboratories. On the other hand, wearable accelerometers enable diagnostics outside lab conditions. Models trained by raw marker data at the sacrum achieve an accuracy of 92% in distinguishing PAD patients from non-PAD controls. This accuracy drops to 28% when data from a wearable accelerometer at the waist validate the model. This model was enhanced by using features extracted from the acceleration rather than the raw acceleration, with the marker model accuracy only dropping from 86 to 60% when validated by the wearable accelerometer data.


Asunto(s)
Enfermedad Arterial Periférica , Dispositivos Electrónicos Vestibles , Humanos , Marcha , Aceleración , Acelerometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA