Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Microbiol ; 206(7): 286, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829426

RESUMEN

Controlling the hazard of sclerotia produced by the Sclerotinia sclerotiorum is very complex, and it is urgent to adopt an effective method that is harmonious environmentally to control the disease. Among the six isolates isolated from the rhizosphere of lettuce, the isolate HZA84 demonstrated a high activity in its antagonism towards Sclerotinia sclerotiorum in vitro, and produces siderophore. By amplification of internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF1-α), and RNA polymerase II subunit (RPB2) genes, the isolate HZA84 was identified as Trichoderma asperellum, which was confirmed by analysis of phylogenetic tree. The Scanning electron microscope monitoring detected that the isolate HZA84 spread over the sclerotial surface, thus, damaging, decomposing, and distorting the globular cells of the outer cortex of the sclerotia. The Real-time polymerase chain reaction (RT-qPCR) analysis disclosed the overexpression of two genes (chit33 and chit37) encoding the endochitinase in addition to one gene (prb1) encoding the proteinase during 4 and 8 days of the parasitism behavior of isolate HZA84 on the sclerotia surface. These enzymes aligned together in the sclerotia destruction by hyperparasitism. On the other hand, the pots trial revealed that spraying of isolate HZA84 reduced the drop disease symptoms of lettuce. The disease severity was decreased by 19.33 and the biocontrol efficiency was increased by 80.67% within the fourth week of inoculation. These findings magnify the unique role of Trichoderma in disrupting the development of plant diseases in sustainable ways.


Asunto(s)
Ascomicetos , Lactuca , Filogenia , Enfermedades de las Plantas , Lactuca/microbiología , Ascomicetos/genética , Ascomicetos/fisiología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Rizosfera , Antibiosis , Hypocreales/genética , Hypocreales/metabolismo , Hypocreales/aislamiento & purificación , Microbiología del Suelo , Trichoderma/genética , Trichoderma/aislamiento & purificación , Trichoderma/fisiología , Trichoderma/metabolismo
2.
Pestic Biochem Physiol ; 200: 105807, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582579

RESUMEN

Recently, nanotechnology is among the most promising technologies used in all areas of research. The production of metal nanoparticles using plant parts has received significant attention for its environmental friendliness and effectiveness. Therefore, we investigated the possible applications of biological synthesized nickel oxide nanoparticles (NiONPs). In this study, NiONPs were synthesized through biological method using an aqueous extract of saffron stigmas (Crocus sativus L). The structure, morphology, purity, and physicochemical properties of the obtained NPs were confirmed through Scanning/Transmission Electron Microscopy attached with Energy Dispersive Spectrum, X-ray Diffraction, and Fourier transform infrared. The spherically shaped NiONPs were found by Debye Scherer's formula to have a mean dimension of 41.19 nm. The application of NiONPs in vitro at 50, 100, and 200 µg/mL, respectively, produced a clear region of 2.0, 2.2, and 2.5 cm. Treatment of Xoo cell with NiONPs reduced the growth and biofilm formation, respectively, by 88.68% and 83.69% at 200 µg/mL. Adding 200 µg/mL NiONPs into Xoo cells produced a significant amount of ROS in comparison with the control. Bacterial apoptosis increased dramatically from 1.05% (control) to 99.80% (200 µg/mL NiONPs). When compared to the control, rice plants treated with 200 µg/mL NiONPs significantly improved growth characteristics and biomass. Interestingly, the proportion of diseased leaf area in infected plants with Xoo treated with NiONPs reduced to 22% from 74% in diseased plants. Taken together, NiONPs demonstrates its effectiveness as a promising tool as a nano-bactericide in managing bacterial infection caused by Xoo.


Asunto(s)
Nanopartículas del Metal , Níquel , Oryza , Xanthomonas , Oryza/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
3.
Environ Geochem Health ; 46(8): 267, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954229

RESUMEN

This study examines the levels of heavy metals in polyculture fish (Labeo rohita, Cyprinus carpio, and Catla catla), water, and sediment in Tanda Dam, Kohat, Pakistan, aiming to understand environmental and health risks. Samples of fish, water, and sediment were collected from 3 fish farms, and heavy metal concentrations were measured using a Flame Atomic Absorption Spectrophotometer (AAS). Results reveal that C. catla exhibited significantly higher (p < 0.05) levels of Zn than other fish species. Conversely, C. carpio showed significantly higher (p < 0.05) concentrations of Pb, Cd, Cr, Mn, Cu, As, and Ni than other species. The heavy metal hierarchy in C. carpio was found to be Zn > Cu > Pb > Cr > Cd > Mn > As > Ni. While heavy metal levels in L. rohita and C. catla generally fell within reference ranges, exceptions were noted for Zn, Pb, and Cd. Conversely, in C. carpio, all metals exceeded reference ranges except for Cu and Ni. Principal Component Analysis (PCA) indicated a close relationship between water and sediment. Additionally, cluster analysis suggested that C. catla formed a distinct cluster from L. rohita and C. carpio, implying different responses to the environment. Despite concerns raised by the Geoaccumulation Index (Igeo) and Contamination Factor (CF), particularly for Cd, which exhibited a high CF. Furthermore, Hazard Index (HI) values for all three fish species were below 1, suggesting low health risks. However, elevated Igeo and CF values for Cd suggest significant pollution originating from anthropogenic sources. This study underscores the importance of monitoring heavy metals in water for both environmental preservation and human health protection. Future research efforts should prioritize pollution control measures to ensure ecosystem and public health safety.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Animales , Contaminantes Químicos del Agua/análisis , Humanos , Medición de Riesgo , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos , Pakistán , Ecosistema , Carpas/metabolismo , Peces/metabolismo , Análisis de Componente Principal , Acuicultura
4.
Environ Geochem Health ; 46(6): 191, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696024

RESUMEN

Pesticides are frequently used to protect crop yields and manage malaria vectors; however, their inadvertent transport into aquatic habitats poses a significant concern. Various anthropogenic activities influence the Indus River in Pakistan. This study aimed to assess the presence of eight pesticide residues at three different sites (Kalabagh, Kundian, and Chashma) in water, sediment, and the fish species (Labeo rohita) during both dry and wet seasons to measure the intensity of this pressure. Pesticide analysis was carried out using gas chromatography equipped with an electron capture detector. The results revealed the highest concentrations of pesticides during both dry and wet seasons at all sites, measuring 0.83 and 0.62 µg/l (water), 12.37 and 9.20 µg/g/dw (sediment), and 14.27 and 11.29 µg/g/ww (L. rohita), respectively. Overall, pesticide concentrations were higher in the dry season than in the wet season across all study sites. Based on detection frequency and concentration in both seasons at all sites, dominant pesticides included cypermethrin and carbofuran (in water), as well as endosulfan and cypermethrin (in sediment and fish tissue). Levels of endosulfan and cypermethrin exceeded standard limits. Moreover, principal component analysis (PCA) indicated no correlation among pesticides in fish tissue, sediment, and water. However, pesticides exhibited different behavior in different seasons. Furthermore, endosulfan and triazophos impose great human health risk, as indicated by the THQ value (> 1). The overall HI value was greater for site 1 in the dry season (8.378). The study concluded that the presence of agricultural pesticides in the Indus River poses a risk to aquatic life and has the potential to disrupt the entire food chain. This highlights the importance of sustainable practices for the study area and Pakistan overall agricultural and environmental sustainability. It is further recommended to strengthen regulations for reduced pesticide use and promote eco-friendly pest management.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Plaguicidas , Ríos , Contaminantes Químicos del Agua , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Animales , Ríos/química , Pakistán , Humanos , Medición de Riesgo , Plaguicidas/análisis , Monitoreo del Ambiente/métodos , Estaciones del Año , Residuos de Plaguicidas/análisis , Cyprinidae , Peces
5.
Saudi Pharm J ; 32(5): 102045, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38571766

RESUMEN

The ergosterol from mushrooms has gained significant ethnopharmacological importance in various cultures, including China, Japan, and Europe. This compound has been found to possess immune-boosting and anti-inflammatory properties, making it useful in the treatment of immune disorders. In this study, we focused on investigating the potential anticancer properties of ergosterol isolated from the edible mushroom Leucocalocybe mongolica in breast cancer cell lines. The ergosterol was purified and identified using advanced analytical techniques such as ESI-MS and NMR. We conducted cell proliferation assays on 4 T1 breast cancer cells to assess the cytotoxic effects of ergosterol. Furthermore, we analyzed the transcription levels of BAX, caspase-7, BCL-2, STAT-3, and PARP proteins using real-time PCR and Western blot analysis. Additionally, we employed non-targeted ultra-high-performance liquid chromatography and high-resolution mass spectrometry (UPLC-MS/MS) to study the potential mechanisms underlying the anticancer effects of ergosterol at the metabolomics level. The results demonstrated a significant reduction in cell viability and the induction of apoptosis upon treatment with ergosterol, especially at higher concentrations (P < 0.05). Moreover, ergosterol affected the expression of cancer-related genes, upregulating pro-apoptotic proteins such as BAX, caspase-7, and PARP, while downregulating the anti-apoptotic proteins BCL-2 and STAT-3 (P < 0.05). Western blot analysis confirmed these findings and provided further evidence of ergosterol's role in inducing apoptosis. Metabolomics analysis revealed substantial changes in pathways related to amino acid, antioxidant, and carbohydrate metabolism. In conclusion, our study demonstrates that ergosterol exhibits anticancer effects by inducing apoptosis and modulating metabolic pathways in breast cancer cells.

6.
Mar Drugs ; 21(1)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36662218

RESUMEN

This study aims to obtain a novel probiotic strain adapted to marine habitats and to assess its antisepsis properties using a cecal ligation and puncture (CLP) model in rodents. The marine Enterococcus faecium EA9 was isolated from marine shrimp samples and evaluated for probiotic potential after phenotypical and molecular identification. In septic animals, hepatic and renal tissues were histologically and biochemically evaluated for inflammation and oxidative stress following the probiotic treatment. Moreover, gene expressions of multiple signaling cascades were determined using RT-PCR. EA9 was identified and genotyped as Enterococcus faecium with a 99.88% identity. EA9 did not exhibit any signs of hemolysis and survived at low pH and elevated concentrations of bile salts. Moreover, EA9 isolate had antibacterial activity against different pathogenic bacteria and could thrive in 6.5% NaCl. Septic animals treated with EA9 had improved liver and kidney functions, lower inflammatory and lipid peroxidation biomarkers, and enhanced antioxidant enzymes. The CLP-induced necrotic histological changes and altered gene expressions of IL-10, IL-1ß, INF-γ, COX-2, SOD-1, SOD-2, HO-1, AKT, mTOR, iNOS, and STAT-3 were abolished by the EA9 probiotic in septic animals. The isolate Enterococcus faecium EA9 represents a promising marine probiotic. The in vivo antisepsis testing of EA9 highlighted its potential and effective therapeutic approach.


Asunto(s)
Enterococcus faecium , Probióticos , Ratas , Animales , Hígado , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Probióticos/farmacología
7.
Saudi Pharm J ; 31(8): 101669, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576853

RESUMEN

Previous investigations have shown that D. viscosa herbal extract is often used to treat a variety of diseases. Therefore, the purpose of this study was to investigate any additional potential impacts on rat liver and kidney damage induced by diabetes. Streptozotocin (STZ) (60 mg/kg/day) was given as a single dosage to cause type 1 diabetes. After then, diabetic rats received oral doses of D. viscosa for four weeks at 150 and 300 mg/kg/day. Blood, liver, and kidney tissues were collected at the end of the treatment and examined. Analysis was made of the serum lipid profile, liver, and kidney functions, as well as blood biochemistry. Moreover, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1ß), prostaglandin E-2 (PGE-2), and nitric oxide (NO) were estimated in serum. In liver and kidney samples, thiobarbituric acid reactive substances (TBARs) and reduced glutathione (GSH), as well as the pro-inflammatory cytokines and enzymatic activities of glutathione peroxidase (GPx), glutathione reeducates (GR), glutathione-S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) were analyzed. Histological changes in liver and kidney cross-sections were also observed. Our findings demonstrated that D. viscosa dramatically decreased pro-inflammatory indicators in blood, kidney, and liver tissues as well as blood glucose, and restored insulin levels, and lipid profiles. Additionally, it significantly raises the antioxidant enzyme activity SOD, CAT, GPx, and GST, while significantly lowering TBARs levels. The above-mentioned biochemical changes that took place in tissues were further supported by histological alterations. These findings imply that D. viscosa protects against STZ-induced hyperglycemia, aberrant lipid synthesis, and oxidative stress and that these benefits may be mediated by interacting with various targets to increase the levels of antioxidant enzymes in the liver and kidneys. Its mode of action and safety for use as medicine against various metabolic problems caused by diabetes require more research.

8.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35163209

RESUMEN

The present study is designed to determine the effect of LCZ696 on DCM in rats and investigate the underlying mechanism involved. Diabetes was induced by feeding rats with a high-fat diet for six weeks following a single injection of STZ (30 mg/kg). Diabetic rats were divided into three groups (n = 10). LCZ696 and valsartan treatment was started two weeks after diabetic induction and continued for eight weeks. At the end of the treatment, serum and cardiac tissues were analyzed by RT-PCR, Western blot, and ELISA kits. LCZ696 and valsartan ameliorated DCM progression by inhibiting AGEs formation at activity levels; pro-apoptotic markers (BAX/Bcl2 ratio and caspase-3) in mRNA and protein expressions, the NF-κB at mRNA; and protein levels associated with the restoration of elevated proinflammatory cytokines such as the TNF-α, IL-6, and IL-1ß at the activity level. Furthermore, LCZ696 and valsartan contribute to restoring the induction of ER stress parameters (GRP78, PERK, eIF2a, ATF4, and CHOP) at mRNA and protein levels. LCZ696 and valsartan attenuated DCM by inhibiting the myocardial inflammation, ER stress, and apoptosis through AGEs/NF-κB and PERK/CHOP signaling cascades. Collectively, the present results reveal that LCZ696 had a more protective solid effect against DCM than valsartan.


Asunto(s)
Aminobutiratos/farmacología , Compuestos de Bifenilo/farmacología , Cardiomiopatías Diabéticas/prevención & control , Valsartán/farmacología , Aminobutiratos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Compuestos de Bifenilo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa , Combinación de Medicamentos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Productos Finales de Glicación Avanzada/efectos de los fármacos , Inflamación/tratamiento farmacológico , Masculino , Miocardio/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Estreptozocina/farmacología , Factor de Transcripción CHOP/metabolismo , Valsartán/metabolismo , eIF-2 Quinasa/metabolismo
9.
Molecules ; 26(22)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34833955

RESUMEN

NAD(P)H:quinone acceptor oxidoreductase-1 (NQO1) is a ubiquitous flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory two-electron reductions of quinones, quinonimines, nitroaromatics, and azo dyes. NQO1 is a multifunctional antioxidant enzyme whose expression and deletion are linked to reduced and increased oxidative stress susceptibilities. NQO1 acts as both a tumor suppressor and tumor promoter; thus, the inhibition of NQO1 results in less tumor burden. In addition, the high expression of NQO1 is associated with a shorter survival time of cancer patients. Inhibiting NQO1 also enables certain anticancer agents to evade the detoxification process. In this study, a series of phytobioactives were screened based on their chemical classes such as coumarins, flavonoids, and triterpenoids for their action on NQO1. The in silico evaluations were conducted using PyRx virtual screening tools, where the flavone compound, Orientin showed a better binding affinity score of -8.18 when compared with standard inhibitor Dicumarol with favorable ADME properties. An MD simulation study found that the Orientin binding to NQO1 away from the substrate-binding site induces a potential conformational change in the substrate-binding site, thereby inhibiting substrate accessibility towards the FAD-binding domain. Furthermore, with this computational approach we are offering a scope for validation of the new therapeutic components for their in vitro and in vivo efficacy against NQO1.


Asunto(s)
Antineoplásicos/farmacología , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Fitoquímicos/farmacología , Antioxidantes/farmacología , Sitios de Unión/efectos de los fármacos , Cumarinas/farmacología , Flavonas/farmacología , Flavonoides/farmacología , Humanos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Triterpenos/farmacología
10.
Int J Med Sci ; 17(18): 3098-3106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33173431

RESUMEN

Background and objectives: Although diabetic-induced hepatotoxicity is less common, it can be included in the list of target organ pathologies associated with diabetes. This study aimed to investigate the potential therapeutic role of sacubitril/valsartan (LCZ696) in modulating oxidative and inflammatory injuries and liver fibrosis in STZ-induced hyperglycemic rats in comparison to valsartan alone. Materials and Methods: Following the induction of diabetes using a single dose of streptozotocin (STZ), STZ-induced hyperglycemic animals were administered LCZ696 or valsartan for 6 weeks. Glucose, transaminases, lipid profile, tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), and interleukin - 6 (IL-6), were estimated using the obtained serum. Oxidative stress biomarkers including thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were measured in the liver homogenate. Additionally, the levels of TNF-α, IL-1ß, IL-6, and nuclear factor - kappa ß (NF-κB) levels were estimated in hepatic tissue. To assess the general histopathological changes, harvested liver tissue was treated with hematoxylin and eosin or Masson's trichrome staining to detect fibrosis. Results: STZ-induced hyperglycemic rats demonstrated high blood glucose, dyslipidemia, and significant elevation in hepatic transaminases, proinflammatory cytokines, NF-κB, lipid peroxidation, and hepatic fibrosis, with impairment in antioxidant enzymes. In STZ-induced hyperglycemic rats, the administration of LCZ696 ameliorated hyperglycemia, dyslipidemia, improved liver functions, and boosted antioxidants enzymes. Furthermore, LCZ696 therapy attenuated oxidation, inflammation, progression of liver injury, and hepatic fibrosis. LCZ696 was superior to valsartan in reducing AST, hepatic fibrosis, tissue IL-1ß, TNF-α and NF-κB. In addition, compared with the valsartan group, LCZ696 significantly increased the antioxidant parameters such as GSH, SOD, CAT and GPx. Conclusion: Collectively, our data demonstrated that LCZ696 could suppress the progression of diabetes-induced hepatic fibrosis, correlating with reduced oxidative stress, hepatic inflammation and NF-κB compared with valsartan alone.


Asunto(s)
Aminobutiratos/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Cirrosis Hepática/tratamiento farmacológico , Valsartán/uso terapéutico , Aminobutiratos/farmacología , Antagonistas de Receptores de Angiotensina/farmacología , Animales , Compuestos de Bifenilo/farmacología , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/metabolismo , Combinación de Medicamentos , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/sangre , Cirrosis Hepática/etiología , Masculino , Neprilisina/antagonistas & inhibidores , Neprilisina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Estreptozocina/administración & dosificación , Estreptozocina/toxicidad , Valsartán/farmacología
11.
Int J Med Sci ; 17(9): 1156-1166, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547311

RESUMEN

Hypercholesterolemia is a major risk factor for several cardiovascular and metabolic diseases as it triggers oxidative and pro-inflammatory cascades. Baicalein (BL) is a natural flavone with multiple therapeutic properties. The present study aimed to evaluate the potential protective effect of BL supplementation in hypercholesterolaemic rats. Rats were fed a high-cholesterol diet (HCD) for six weeks and then orally administered BL at two doses (25 and 50 mg/kg body weight/day) for four weeks. Serum lipids, liver enzymes, cardiac enzymes, renal markers, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), interleukin-10 (IL-10), caspase-3, nitric oxide (NO) and prostaglandin-2 (PGE-2) were measured. In renal, hepatic, and cardiac tissues, thiobarbituric acid-reactive (TBARS) substance, glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were measured. The altered levels of lipoproteins, aminotransferases, creatine kinases, and urea in hypercholesterolemic animals were significantly corrected by BL. Inflammatory and apoptotic biomarkers were also markedly attenuated in the HCD group following BL treatment. Hypercholesterolemia considerably induced the lipid peroxidation product, TBARS, and oxidative radicals in cardiac, hepatic, and renal tissues, which were attenuated by BL treatment, particularly, at the 50 mg/kg/day dose. BL enhanced the activities of superoxide dismutase, catalase, and glutathione peroxidase that were suppressed by HCD. Histological alterations induced by cholesterol overload in cardiac, hepatic, and renal tissues were ameliorated by BL supplementation. Our results show that the BL treatments (25 and 50 mg/kg/day) to HCD fed rats improved all the altered parameters. These results demonstrate that BL treatment improves cardiac, renal and hepatic dysfunctions in hypercholesterolaemic rats by activation of cellular antioxidant enzymes and/or suppression of inflammatory cytokines.


Asunto(s)
Flavanonas/uso terapéutico , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Animales , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
12.
Molecules ; 25(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105570

RESUMEN

Wounds and burn injury are major causes of death and disability worldwide. Myricetin is a common bioactive flavonoid isolated naturally from the plant kingdom. Herein, a topical application of naturally isolated myricetin from the shoots of Tecomaria capensis v. aurea on excisional wound healing that was performed in albino rats. The wounded rats were treated every day with 10 and 20% myricetin for 14 days. During the experiment, the wound closure percentage was estimated at days 0, 7, and 14. Effects of myricetin on the inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and cluster of differentiation 68 (CD68) in the serum were evaluated using immunosorbent assay kits. The percentage of wound closure and contraction was delayed in wounded rats (67.35%) and was remarkably increased after treatment of wounded rats with myricetin; the treatment with 20% myricetin was the most potent (98.76%). Histological findings exhibited that 10% myricetin caused the formation of a large area of scarring at the wound enclosure and stratified squamous epithelium without the formation of papillae as in the control group. Treatment with 20% myricetin exhibited less area of scarring at the wound enclosure as well as re-epithelialization with a high density of fibroblasts and blood capillaries in the wound. Level elevations of serum pro-inflammatory cytokines, IL-1ß, and TNF-α and macrophage CD68 were decreased in wounded rats treated with myricetin. Thus, it can be suggested that the enhancements in inflammatory cytokines as well as systemic reorganization after myricetin treatment may be recommended to play a crucial part in the promotion of wound healing. The findings suggest that treatment with a higher dose of myricetin was better in improving wound curing in rats. It could serve as a potent anti-inflammatory agent and can be used as an adjunctive or alternative agent in the future.


Asunto(s)
Antiinflamatorios/química , Bignoniaceae/química , Quemaduras/tratamiento farmacológico , Flavonoides/química , Extractos Vegetales/química , Brotes de la Planta/química , Cicatrización de Heridas/efectos de los fármacos , Administración Tópica , Animales , Antiinflamatorios/administración & dosificación , Antígenos CD/sangre , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/sangre , Antígenos de Diferenciación Mielomonocítica/metabolismo , Capilares/efectos de los fármacos , Citocinas/sangre , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Fibroblastos/efectos de los fármacos , Flavonoides/administración & dosificación , Humanos , Macrófagos/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Ratas
13.
Molecules ; 25(18)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942704

RESUMEN

Cyperus has been commonly used as a multi-use medicinal plant in folk medicine worldwide. The objectives of our study were to determine the different metabolites in the Cyperus conglomeratus Rottb. methanol extract, and to assess its in vivo gastroprotective effect in ethanol-induced gastric ulcer model in rats. Serum levels of galactin-3 and TNF-α were employed as biochemical markers. To pinpoint for active agents, comprehensive metabolites profiling of extract via UPLC-qTOF-MS/MS was employed. A total of 77 chromatographic peaks were detected, of which 70 were annotated. The detected metabolites were categorized into phenolic acids and their derivatives, flavonoids, stilbenes, aurones, quinones, terpenes, and steroids. Rats were divided into six groups; healthy control, ulcer control, standard drug group, and 25, 50, 100 mg/kg of C. conglomeratus treated rats. Pre-treatment with C. conglomeratus alcohol extract significantly reduced galactin-3, and TNF-α in ethanol-induced ulcer model at 25, 50, and 100 mg/kg. Further histopathological and histochemical studies revealed moderate erosion of superficial epithelium, few infiltrated inflammatory cells, and depletion of gastric tissue glycoprotein in the ulcer group. Treatment with the extract protected the gastric epithelial cells in a dose-dependent manner. It could be concluded that C. conglomeratus extract provides significant gastroprotective activity in ethanol-induced gastric ulcer and ought to be included in nutraceuticals in the future for ulcer treatment.


Asunto(s)
Antiulcerosos/química , Cyperus/química , Fitoquímicos/química , Extractos Vegetales/química , Administración Oral , Animales , Antiulcerosos/farmacología , Antiulcerosos/uso terapéutico , Cromatografía Líquida de Alta Presión , Cyperus/metabolismo , Etanol/toxicidad , Femenino , Galectina 3/sangre , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/patología , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/metabolismo , Ranitidina/uso terapéutico , Ratas , Ratas Wistar , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/patología , Espectrometría de Masas en Tándem , Factor de Necrosis Tumoral alfa/sangre
14.
Saudi Pharm J ; 28(8): 951-962, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32792840

RESUMEN

In 30% of epileptic individuals, intractable epilepsy represents a problem for the management of seizures and severely affects the patient's quality of life due to pharmacoresistance with commonly used antiseizure drugs (ASDs). Surgery is not the best option for all resistant patients due to its post-surgical consequences. Therefore, several alternative or complementary therapies have scientifically proven significant therapeutic potential for the management of seizures in intractable epilepsy patients with seizure-free occurrences. Various non-pharmacological interventions include metabolic therapy, brain stimulation therapy, and complementary therapy. Metabolic therapy works out by altering the energy metabolites and include the ketogenic diets (KD) (that is restricted in carbohydrates and mimics the metabolic state of the body as produced during fasting and exerts its antiepileptic effect) and anaplerotic diet (which revives the level of TCA cycle intermediates and this is responsible for its effect). Neuromodulation therapy includes vagus nerve stimulation (VNS), responsive neurostimulation therapy (RNS) and transcranial magnetic stimulation therapy (TMS). Complementary therapies such as biofeedback and music therapy have demonstrated promising results in pharmacoresistant epilepsies. The current emphasis of the review article is to explore the different integrated mechanisms of various treatments for adequate seizure control, and their limitations, and supportive pieces of evidence that show the efficacy and tolerability of these non-pharmacological options.

15.
Drug Dev Res ; 80(4): 475-480, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30701566

RESUMEN

An overdose of acetaminophen (APAP) causes liver injury in experimental animals and humans. The activation step (formation of reactive metabolite, N-acetyl-p-benzoquinone imine by cytochrome P450 system) and the consequent downstream pathway of oxidative stress, nitrosative stress, and inflammation play an important role in APAP-induced hepatotoxicity. Formulation of APAP with an inhibitor of the activation step would be ideal to prevent accidental and intentional APAP toxicity. Dimethyl sulfoxide (DMSO) is a common colorless, inexpensive solvent, and considered safe in human. We hypothesized that a less hepatotoxic APAP if co-formulated with DMSO. To test this hypothesis, C57BL/6 mice were given toxic dose of APAP (250 mg kg-1 , i.p.) mixed with different doses of DMSO (25, 50, 100, and 200 µl kg-1 ). Six hours after APAP treatment, blood and lives were collected for analysis. In DMSO treated groups, there was dose-dependent decrease in markers of liver injury, alanine aminotransferase, and aspartate aminotransferase. Maximum protection was obtained with 200 µl DMSO kg-1 . DMSO was shown to inhibit the activation step by decreasing the rate of GSH depletion in vivo and inhibiting cytochrome P450 system in vitro. Also the levels of lipid peroxides, nitrate/nitrite, tumor necrosis factor-alpha, and interleukin 1ß were decreased significantly. In conclusion, DMSO exerts its protective action by inhibiting the metabolic activation of APAP and thus alleviating the downstream, oxidative stress, nitrosative stress, and inflammation via indirect inhibition. Our findings suggest that replacing the current APAP with APAP/DMSO formulation could prevent accidental and intentional APAP toxicity.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Dimetilsulfóxido/farmacología , Hígado/efectos de los fármacos , Acetaminofén/administración & dosificación , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Dimetilsulfóxido/administración & dosificación , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Composición de Medicamentos , Hígado/metabolismo , Pruebas de Función Hepática , Ratones Endogámicos C57BL , Estrés Nitrosativo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
16.
J Anim Physiol Anim Nutr (Berl) ; 103(2): 534-546, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30597625

RESUMEN

Using nutritional antioxidants in livestock systems is considered the key in improving animal production. The current study assumes that dietary tomato powder (TP) supplementation positively affects haemato-immunological, biochemical, and antioxidant parameters for New Zealand rabbits. A total of 30 rabbits (45 days old) were assigned to three groups, including a diet with no additives (control), and two dietary treatments with the providing of 1% or 2% TP. Mass spectrometric study for TP methanolic extract showed some phenolic compounds. Consumption of TP supplemented diets significantly (p < 0.001) affected body weight gain and feed efficiency. Red blood cells and white blood cells count exhibited a significant increase (p < 0.001) in both TP groups compared with the control. In addition to, feeding rabbits on TP enhanced cell-mediated and humoral immune responses through a significant increase in phagocytosis, chemotaxis, and levels of immunoglobulins (TIg, IgG, IgM and IgA). Supplementation of TP significantly (p < 0.01) reduced lipid profile induces except high-density lipoprotein cholesterol values. A remarkable significant (p < 0.001) effect on serum and hepatic oxidative stress responses were observed with TP addition. Ultimately, TP supplementation could play a potential role as a growth and health enhancer for fattening rabbits.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos , Polvos , Conejos/crecimiento & desarrollo , Solanum lycopersicum , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Antioxidantes/metabolismo , Biomarcadores , Manipulación de Alimentos , Frutas , Estrés Oxidativo
17.
Med Princ Pract ; 28(2): 178-185, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30537701

RESUMEN

OBJECTIVE: Diabetic complications involve multiple pathological pathways, including hyperglycemia-induced oxidative stress and inflammation. Combination therapy is usually employed to improve treatment outcomes and to lower potential adverse effects. In this study, we evaluated the effects of antidiabetic and antihypertensive agents, glibenclamide (GLI) and losartan (LT), on diabetes mellitus (DM)-associated metabolic changes in rats. MATERIALS AND METHODS: Streptozotocin-induced diabetic animals were orally treated with GLI 5 mg/kg and/or LT 25 mg/kg for 4 weeks. Blood glucose, insulin, aspartate aminotransferase, alanine aminotransferase, urinary creatinine, and urea levels were measured. Serum, liver, and kidney values of inflammatory markers, such as interleukin-1ß, tumor necrosis factor alpha, and interleukin-6 were assessed, along with lipid peroxidation products (e.g., thiobarbituric acid reactive substances), endogenous antioxidants (e.g., glutathione), as well as antioxidant enzyme activities (e.g., catalase, superoxide dismutase, and glutathione peroxidase). Finally, histological changes in liver and kidney tissues were evaluated. RESULTS: DM markedly induced systemic, hepatic, and renal inflammation and lowered antioxidant defense mechanisms. Treatment of diabetic rats with either GLI or LT significantly improved liver and kidney functions and histological structure. Moreover, both medications reduced signs of oxidative stress and inflammation in blood, liver, and kidney samples. Combining GLI and LT showed similar protective potential against systemic, hepatic, and renal oxidative stress and inflammation. CONCLUSION: Adding LT to GLI therapy revealed prospective antioxidant and anti-inflammatory action, while no synergistic or additive effects were observed.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Gliburida/farmacología , Hipoglucemiantes/farmacología , Losartán/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/efectos de los fármacos , Estudios Prospectivos , Ratas , Superóxido Dismutasa/metabolismo
18.
BMC Nephrol ; 18(1): 194, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619064

RESUMEN

BACKGROUND: Cisplatin (CP) is commonly used in the treatment of different types of cancer but nephrotoxicity has been a major limiting factor. Therefore, the present study aimed to study the possible protective effect of rutin against nephrotoxicity induced by cisplatin in rats. METHODS: Forty male Wistar albino rats were randomly divided into 4 groups. Rats of group 1 control group intraperitoneal (i.p.) received 2.5 ml/kg, group 2 CP group received single dose 5 mg/kg cisplatin i.p. group 3 rutin group orally received 30 mg/kg rutin group 4 (CP plus rutin) received CP and rutin as in group 2 and 3. Kidneys were harvested for histopathology and for the study the gene expression of c-Jun N-terminal kinases (JNK), Mitogen-activated protein kinase 4 (MKK4), MKK7, P38 mitogen-activated protein kinases (P38), tumor necrosis factors alpha (TNF-α), TNF Receptor-Associated Factor 2 (TRAF2), and interleukin-1 alpha (IL-1-α). RESULTS: The cisplatin single dose administration to rats induced nephrotoxicity associated with a significant increase in blood urea nitrogen (BUN) and serum creatinine and significantly increase Malondialdehyde (MDA) in kidney tissues by 230 ± 5.5 nmol/g compared to control group. The animal treated with cisplatin showed a significant increase in the expression levels of the IL-1α (260%), TRFA2 (491%), P38 (410%), MKK4 (263%), MKK7 (412%), JNK (680%) and TNF-α (300%) genes compared to control group. Additionally, histopathological examination showed that cisplatin-induced interstitial congestion, focal mononuclear cell inflammatory, cell infiltrate, acute tubular injury with reactive atypia and apoptotic cells. Rutin administration attenuated cisplatin-induced alteration in gene expression and structural and functional changes in the kidney. Additionally, histopathological examination of kidney tissues confirmed gene expression data. CONCLUSION: The present study suggested that the anti-oxidant and anti-inflammatory effect of rutin may prevent CP-induced nephrotoxicity via decreasing the oxidative stress, inhibiting the interconnected ROS/JNK/TNF/P38 MAPK signaling pathways, and repairing the histopathological changes against cisplatin administration.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Lesión Renal Aguda/patología , Animales , Masculino , Ratas , Ratas Wistar , Rutina , Resultado del Tratamiento
19.
BMC Complement Altern Med ; 17(1): 45, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086769

RESUMEN

BACKGROUND: Liver diseases are major global health problems. Ginseng extract has antioxidant, immune-modulatory and anti-inflammatory activities. This study investigated the effect of ginseng extract on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. METHODS: Male Wistar rats were divided into four groups: control group, ginseng group, CCl4 group and CCl4 + ginseng group. Liver injury was induced by the intraperitoneal (I.P) injection of 3 ml/kg CCl4 (30% in olive oil) weekly for 8 weeks. The control group was I.P injected with olive oil. The expression of genes encoding transforming growth factor beta (TGF-ß), type I TGF-ß receptor (TßR-1), type II TGF-ß receptor (TßR-II), mothers against decapentaplegic homolog 2 (Smad2), Smad3, Smad4, matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor matrix metalloproteinase-1 (TIMP-1), Collagen 1a2 (Col1a2), Collagen 3a1 (Col3a1), interleukin-8 (IL-8) and interleukin -10 (IL-10) were measured by real-time PCR. RESULTS: Treatment with ginseng extract decreased hepatic fat deposition and lowered hepatic reticular fiber accumulation compared with the CCl4 group. The CCl4 group showed a significant increase in hepatotoxicity biomarkers and up-regulation of the expression of genes encoding TGF-ß, TßR-I, TßR-II, MMP2, MMP9, Smad-2,-3, -4, and IL-8 compared with the control group. However, CCl4 administration resulted in the significant down-regulation of IL-10 mRNA expression compared with the control group. Interestingly, ginseng extract supplementation completely reversed the biochemical markers of hepatotoxicity and the gene expression alterations induced by CCl4. CONCLUSION: ginseng extract had an anti-fibrosis effect via the regulation of the TGF-ß1/Smad signaling pathway in the CCl4-induced liver fibrosis model. The major target was the inhibition of the expression of TGF-ß1, Smad2, and Smad3.


Asunto(s)
Cirrosis Hepática/tratamiento farmacológico , Panax/química , Extractos Vegetales/administración & dosificación , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Tetracloruro de Carbono/efectos adversos , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Masculino , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Wistar , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/genética
20.
Acta Pharmacol Sin ; 36(2): 209-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25544359

RESUMEN

AIM: Depression is a risk factor for impaired bone mass and micro-architecture, but several antidepressants were found to increase the incidence of osteoporotic fractures. In the present study we used ovariectomized (OVX) rats as a model of osteoporosis to investigate the effects of the antidepressant bupropion on the femoral bones. METHODS: OVX animals were treated with bupropion (30, 60 mg·kg(-1)·d(-1)) for six weeks. Bone turnover biomarkers (urinary DPD/Cr ratio, serum BALP, OC, TRAcP 5b, CTX and sRANKL levels) and inflammatory cytokines (TNF-α, IL-1ß and IL-6) were determined using ELISA. Inductively coupled plasma mass spectroscopy (ICP-MS) was used to determine the femoral bone mineral concentrations. The cortical and trabecular morphometric parameters of femoral bones were determined using micro-CT scan and histopathology. RESULTS: In OVX rats, the levels of bone turnover biomarkers and inflammatory cytokines were significantly elevated and femoral bone Ca(2+) and PO4(3-) concentrations were significantly reduced. Moreover, cortical and trabecular morphometric parameters and histopathology of femoral bones were severely altered by ovariectomy. Bupropion dose-dependently inhibited the increases in bone turnover biomarkers and inflammatory cytokines. OVX rats treated with the high dose of bupropion showed normal mineral concentrations in femoral bones. The altered morphometric parameters and histopathology of femoral bones were markedly attenuated by the treatment. CONCLUSION: Bupropion exerts osteo-protective action in OVX rats through suppressing osteoclastogenesis-inducing factors and inflammation, which stabilize the osteoclasts and decrease bone matrix degradation or resorption.


Asunto(s)
Antidepresivos/efectos adversos , Bupropión/efectos adversos , Osteoporosis/fisiopatología , Animales , Densidad Ósea/efectos de los fármacos , Femenino , Fémur/efectos de los fármacos , Ovariectomía/métodos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA