Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood Press ; 31(1): 80-90, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35548940

RESUMEN

PURPOSE: This study examines the effect of antihypertensive drugs on ACE2 and Angiotensin II levels in hypertensive COVID-19 patients. INTRODUCTION: Hypertension is a common comorbidity among severe COVID-19 patients. ACE2 expression can be modulated by antihypertensive drugs such as ACEis and ARBs, which may affect COVID-19's prognosis. BB and CCB reduce mortality, according to some evidence. Their effect on circulating levels of ACE2 and angiotensin II, as well as the severity of COVID-19, is less well studied. MATERIALS AND METHODS: The clinical data were collected from 200 patients in four different antihypertensive medication classes (ACEi, ARB, BB, and CCB). Angiotensin II and ACE2 levels were determined using standard ELISA kits. ACE2, angiotensin II, and other clinical indices were evaluated by linear regression models. RESULTS: Patients on ACEi (n = 57), ARB (n = 68), BB (n = 15), or CCB (n = 30) in this study had mild (n = 76), moderate (n = 76), or severe (n = 52) COVID-19. ACE2 levels were higher in COVID-19 patients with severe disease (p = 0.04) than mild (p = 0.07) and moderate (p = 0.007). The length of hospital stay is correlated with ACE2 levels (r = 0.3, p = 0.003). Angiotensin II levels decreased with severity (p = 0.04). Higher ACE2 levels are associated with higher CRP and D-dimer levels. Elevated Angiotensin II was associated with low levels of CRP, D-dimer, and troponin. ACE2 levels increase with disease severity in patients taking an ARB (p = 0.01), patients taking ACEi, the degree of disease severity was associated with a decrease in angiotensin II. BB patients had the lowest disease severity. CONCLUSION: We found different levels of soluble ACE2, and angiotensin II are observed among COVID-19 patients taking different antihypertensive medications and exhibiting varying levels of disease severity. COVID-19 severity increases with elevated ACE2 levels and lower angiotensin II levels indicating that BB treatment reduces severity regardless of levels of ACE2 and angiotensin II.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hipertensión , Angiotensina II , Antagonistas de Receptores de Angiotensina/uso terapéutico , Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antihipertensivos/uso terapéutico , Humanos , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico
2.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201415

RESUMEN

The SARS-CoV-2 virus utilizes angiotensin converting enzyme (ACE-2) for cell entry and infection. This enzyme has important functions in the renin-angiotensin aldosterone system to preserve cardiovascular function. In addition to the heart, it is expressed in many tissues including the lung, intestines, brain, and kidney, however, its functions in these organs are mostly unknown. ACE-2 has membrane-bound and soluble forms. Its expression levels are altered in disease states and by a variety of medications. Currently, it is not clear how altered ACE-2 levels influence ACE-2 virulence and relevant complications. In addition, membrane-bound and soluble forms are thought to have different effects. Most work on this topic in the literature is on the SARS-CoV virus that has a high genetic resemblance to SARS-Co-V-2 and also uses ACE-2 enzyme to enter the cell, but with much lower affinity. More recent studies on SARS-CoV-2 are mainly clinical studies aiming at relating the effect of medications that are thought to influence ACE-2 levels, with COVID-19 outcomes for patients under these medications. This review paper aims to summarize what is known about the relationship between ACE-2 levels and SARS-CoV/SARS-CoV-2 virulence under altered ACE-2 expression states.


Asunto(s)
Enzima Convertidora de Angiotensina 2/fisiología , COVID-19/fisiopatología , COVID-19/virología , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/química , Inhibidores de la Enzima Convertidora de Angiotensina , Interacciones Microbiota-Huesped , Humanos , Pulmón/metabolismo , Virulencia
3.
J Appl Physiol (1985) ; 130(4): 1143-1151, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33600286

RESUMEN

Many patients who suffer from pulmonary diseases cannot inflate their lungs normally, as they need mechanical ventilation (MV) to assist them. The stress associated with MV can damage the delicate epithelium in small airways and alveoli, which can cause complications resulting in ventilation-induced lung injuries (VILIs) in many cases, especially in patients with acute respiratory distress syndrome (ARDS). Therefore, efforts were directed to develop safe modes for MV. In our work, we propose a different approach to decrease injuries of epithelial cells (EpCs) upon MV. We alter EpCs' cytoskeletal structure to increase their survival rate during airway reopening conditions associated with MV. We tested two anti-inflammatory drugs dexamethasone (DEX) and transdehydroandrosterone (DHEA) to alter the cytoskeleton. Cultured rat L2 alveolar EpCs were exposed to airway reopening conditions using a parallel-plate perfusion chamber. Cells were exposed to a single bubble propagation to simulate stresses associated with mechanical ventilation in both control and study groups. Cellular injury and cytoskeleton reorganization were assessed via fluorescence microscopy, whereas cell topography was studied via atomic force microscopy (AFM). Our results indicate that culturing cells in media, DEX solution, or DHEA solution did not lead to cell death (static cultures). Bubble flows caused significant cell injury. Preexposure to DEX or DHEA decreased cell death significantly. The AFM verified alteration of cell mechanics due to actin fiber depolymerization. These results suggest potential beneficial effects of DEX and DHEA for ARDS treatment for patients with COVID-19. They are also critical for VILIs and applicable to future clinical studies.NEW & NOTEWORTHY Preexposure of cultured cells to either dexamethasone or transdehydroandrosterone significantly decreases cellular injuries associated with mechanical ventilation due to their ability to alter the cell mechanics. This is an alternative protective method against VILIs instead of common methods that rely on modification of mechanical ventilator modes.


Asunto(s)
Androsterona/uso terapéutico , Dexametasona/uso terapéutico , Lesión Pulmonar/tratamiento farmacológico , Respiración Artificial/efectos adversos , Animales , COVID-19/complicaciones , COVID-19/terapia , Muerte Celular/efectos de los fármacos , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Lesión Pulmonar/etiología , Ratas , Tratamiento Farmacológico de COVID-19
4.
Polymers (Basel) ; 13(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34771274

RESUMEN

Plant-based materials have found their application in the packaging with a yearly growing production rate. These naturally biodegradable polymers are obtained from renewable and sustainable natural resources with reduced environmental impact and affordable cost. These materials have found their utilization in fully-renewable plant-based packaging products, such as Tetra Pak®-like containers, by replacing commonly-used polyethylene as the polymer component. Poly(lactic acid) (PLA) is one of the representative plant-based polymers because of its eco-friendliness and excellent chemical and mechanical properties. In this work, a PLA surface was modified by various food additives, namely ascorbic acid (ASA) and fumaric acid (FA), using plasma-initiated grafting reactions in order to improve the surface and adhesion properties of PLA. Various analytical and microscopic techniques were employed to prove the grafting process. Moreover, the improved adhesion of the modified PLA foil to aluminum (Al) foil in a laminate configuration was proven by peel resistance measurements. The peel resistance of modified PLA increased by 74% and 184% for samples modified by ASA and FA, respectively, compared with untreated PLA.

5.
Emergent Mater ; 4(1): 143-168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33786415

RESUMEN

With the recent SARS-CoV-2 outbreak, the importance of rapid and direct detection of respiratory disease viruses has been well recognized. The detection of these viruses with novel technologies is vital in timely prevention and treatment strategies for epidemics and pandemics. Respiratory viruses can be detected from saliva, swab samples, nasal fluid, and blood, and collected samples can be analyzed by various techniques. Conventional methods for virus detection are based on techniques relying on cell culture, antigen-antibody interactions, and nucleic acids. However, these methods require trained personnel as well as expensive equipment. Microfluidic technologies, on the other hand, are one of the most accurate and specific methods to directly detect respiratory tract viruses. During viral infections, the production of detectable amounts of relevant antibodies takes a few days to weeks, hampering the aim of prevention. Alternatively, nucleic acid-based methods can directly detect the virus-specific RNA or DNA region, even before the immune response. There are numerous methods to detect respiratory viruses, but direct detection techniques have higher specificity and sensitivity than other techniques. This review aims to summarize the methods and technologies developed for microfluidic-based direct detection of viruses that cause respiratory infection using different detection techniques. Microfluidics enables the use of minimal sample volumes and thereby leading to a time, cost, and labor effective operation. Microfluidic-based detection technologies provide affordable, portable, rapid, and sensitive analysis of intact virus or virus genetic material, which is very important in pandemic and epidemic events to control outbreaks with an effective diagnosis.

6.
Methods Protoc ; 3(4)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987681

RESUMEN

Parallel plate flow chambers are widely used to expose cultured cells to physiological flows for the investigation of a variety of diseases. These applications usually involve the generation of continuous and steady fluid flow over cell monolayers for extended durations, usually a few days. Another technique is to generate a fast high-stress wave over the cells to see the immediate effect of flow-induced stresses. This can be achieved by propagating an air/liquid interface, in other words, a bubble, over cell monolayers. The approach is relevant to the reopening event of fluid-filled lung bronchioles and alveoli during mechanical ventilation therapy of Acute Respiratory Distress Syndrome. This article explains how we generate a stress wave using a parallel plate flow chamber and presents representative results of this wave on cultured lung epithelial cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA