Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-35023888

RESUMEN

We demonstrate a method for measuring the H2 produced in water from the 10B(n,α)7Li fission reaction. Low energy neutrons from the NIST Center for Neutron Research interact with borate-containing water in a temperature-controlled high pressure cell made from titanium. After exposure for one to several hours, the water is extracted and sparged with argon. H2 entrained in the sparging gas is sampled with a small mass spectrometer. To determine the neutron exposure, a small amount of sodium is included in the borate solution. The water is collected and 24Na activation is measured in a counting apparatus on the following day. The G-value for H2 at room temperature is found to be (1.18 ± 0.10) molecules H2/100eV, in good agreement with previous estimates and recent modeling calculations.

2.
Artículo en Inglés | MEDLINE | ID: mdl-30996496

RESUMEN

This work demonstrates the synergy between the thermo-mechanical and humidity induced degradation as well as the oxidation reactions in the kink-banded areas of ultra-high molar mass polyethylene (UHMMPE) fiber-based laminates used in body armor. For aged materials, the energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) results reveal high concentrations of oxygen containing products, and the EPR results demonstrate the presence of the peroxyl radicals (RO2 • ) in the kink-banded areas. After one year of dark ambient storage, very long-lived RO2 • radicals were observed primarily in the samples exposed to ageing conditions of elevated temperatures, humidity, and mechanical stress. The total percentage of crystallinity, as measured by differential scanning calorimetry, of the kinkbanded fibers was unchanged, indicating that the degradation occurs primarily in the amorphous region, and may also involve recrystallization processes of the degraded chains. However, the most abundant orthorhombic crystalline phase decreases from 77 % to 70 %. This decrease in the orthorhombic structure leads to more diffusion of oxygen into the kink-banded region, enhancing the oxidation processes. No changes are observed in the monoclinic phase of the kinked fibers, which remained constant and constituted ~2 % of the total crystallinity.

3.
Radiat Phys Chem Oxf Engl 1993 ; 143: 47-52, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29230084

RESUMEN

Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. Through utilization of a biorefinery concept, nanocellulose can be produced in large volumes from wood at relatively low cost via ionizing radiation processing. Ionizing radiation causes significant break down of the polysaccharide and leads to the production of potentially useful gaseous products such as H2 and CO. The application of radiation processing to the production of nanocellulose from woody and non-wood sources, such as field grasses, bio-refining byproducts, industrial pulp waste, and agricultural surplus materials remains an open field, ripe for innovation and application. Elucidating the mechanisms of the radiolytic decomposition of cellulose and the mass generation of nanocellulose by radiation processing is key to tapping into this source of nanocelluose for the growth of nanocellulostic-product development. More importantly, understanding the structural break-up of the cell walls as a function of radiation exposure is a key goal and only through careful, detailed characterization and dimensional metrology can this be achieved at the level of detail that is needed to further the growth of large scale radiation processing of plant materials. This work is resulting from strong collaborations between NIST and its academic partners who are pursuing the unique demonstration of applied ionizing radiation processing to plant materials as well as the development of manufacturing metrology for novel nanomaterials.

4.
J Mater Sci Mater Med ; 28(12): 185, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29039618

RESUMEN

We have developed novel photopolymer gels to function as separators in blood collection tubes. By incorporating antioxidants such as α-tocopherol and nitroxides (TEMPO and TEMPOL), the new formulation can be sterilized with electron beam or gamma rays at a dose level of 17 kGy, without inducing premature curing of the photopolymers. For the blood separator gels that contain α-tocopherol, our results show that α-tocopherol plays a decisive role in impeding C-centered free radical propagation reactions through an H-transfer mechanism. This mechanism involves the transfer of an H-atom from the hydroxyl group (OH) of α-tocopherol to the propagating C-centered radical leading to the termination of the polymerization. The sterilization radiation-induced premature curing of the photopolymer was also prevented in the blood separator gel containing nitroxides. For the gels containing TEMPO or TEMPOL, inhibition of the premature curing was achieved through an addition reaction or an H-transfer reaction, respectively. Our results also show that while α-tocopherol is not a contributing factor in the subsequent (time-of-use) UV curing of the gels, nitroxides enhance the UV curing process through nitroxide-mediated living free radical polymerization reactions leading to a decrease in UV curing time. The photopolymer separator gels are shown to function advantageously in clinical laboratory testing, especially for cell-free DNA measurements in blood.


Asunto(s)
Rayos gamma , Polímeros/química , Esterilización/métodos , Rayos Ultravioleta , Animales , Antioxidantes/química , Óxidos N-Cíclicos/química , Geles , Ensayo de Materiales , Polímeros/efectos de la radiación , Marcadores de Spin , Rayos X , alfa-Tocoferol/química
5.
Molecules ; 21(11)2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27886088

RESUMEN

(1) Background: A new family of nanosystems able to discern between normal and tumor cells and to release a therapeutic agent in controlled way were synthetized by e-beam irradiation. This technique permits to obtain biocompatible, sterile, carboxyl-functionalized polyvinylpyrrolidone (PVP-co-acrylic acid) nanogels (NGs); (2) Methods: Here, we performed a targeting strategy based on the recognition of over-expressed proteins on tumor cells, like the folate receptor. The selective targeting was demonstrated by co-culture studies and flow cytometry analysis, using folate conjugated NGs. Moreover, nanoparticles were conjugated to a chemotherapeutic drug or to a pro-apoptotic siRNA through a glutathione sensitive spacer, in order to obtain a controlled release mechanism, specific for cancer cells. The drug efficiency was tested on tumor and healthy cells by flow cytometric analysis, confocal and epifluorescence microscopy and cytotoxicity assay; the siRNA effect was investigated by RNAi experiment; (3) Results: The data obtained showed that the use of NGs permits a faster cargo release in cancer cells, in response to high cytosolic glutathione level, also improving their efficacy; (4) Conclusion: The possibility of releasing biological molecules in a controlled way and to recognize a specific tumor target allows overcoming the typical limits of the classic cancer therapy.


Asunto(s)
Antioxidantes/farmacología , Doxorrubicina/farmacología , Neoplasias/metabolismo , Polietilenglicoles/química , Polietileneimina/química , ARN Interferente Pequeño/farmacología , Animales , Antioxidantes/química , Línea Celular Tumoral , Ácido Fólico/química , Ácido Fólico/metabolismo , Transportadores de Ácido Fólico/antagonistas & inhibidores , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Nanogeles , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Oxidación-Reducción/efectos de los fármacos , Tamaño de la Partícula , Polietilenglicoles/farmacología , Polietileneimina/farmacología , Povidona/química , Povidona/farmacología
6.
J Chem Phys ; 141(19): 194301, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25416885

RESUMEN

In the course of investigations of thermal neutron detection based on mixtures of (10)BF3 with other gases, knowledge was required of the photoabsorption cross sections of (10)BF3 for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. The measured absorption cross sections vary from 10(-20) cm(2) at 135 nm to less than 10(-21) cm(2) in the region from 165 to 205 nm. Three previously unreported absorption features with resolvable structure were found in the regions 135-145 nm, 150-165 nm, and 190-205 nm. Quantum mechanical calculations, using the TD-B3LYP/aug-cc-pVDZ variant of time-dependent density functional theory implemented in Gaussian 09, suggest that the observed absorption features arise from symmetry-changing adiabatic transitions.

7.
Polymers (Basel) ; 15(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37896372

RESUMEN

Nanohydrogel particles of polyethylene glycol (PEG), gelatin (GEL), and PEG-GEL mixtures (MIXs) were synthesized with a high electron beam and 60Co gamma-ray radiation. The relatively novel technique of Asymmetrical Flow Field Flow Fractionation (AF4 or AFFFF) coupled to a Multi-Angle Laser Light Scattering (MALLS) detector was mainly used to determine the hydrodynamic diameter (Dh) of the radiation-synthesized PEG, GEL, and PEG-GEL nanohydrogel particles. Our approach to achieving nanohydrogel particles is to enhance the intracrosslinking reactions and decrease the intercrosslinking reactions of the C-centered radicals of the PEG and GEL. The intracrosslinking reactions of these free radicals were enhanced via irradiation at temperatures of 77-80 °C and using a high dose rate and pulsed irradiation. The shorter average distance between the C-centered free radicals on the backbone of the thermally collapsed PEG and GEL chain, due to the destruction of hydrogen bonds, enhances the intracrosslinking reactions. It was observed that increasing the dose and dose rate decreased the Dh. DLS results lined up with AF4 measurements. This study provides researchers with a clean method to produce GEL-PEG hydrogels without the use of toxic reagents. Particle size can be tuned with dose, dose rate, and temperature as demonstrated in this work. This is ideal for medical applications as the use of ionizing radiation eliminates toxicity concerns and provides simultaneous sterilization of the material.

8.
Polymers (Basel) ; 15(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38231912

RESUMEN

The use of ionizing radiation offers a boundless range of applications for polymer scientists, from inducing crosslinking and/or degradation to grafting a wide variety of monomers onto polymeric chains. This review in particular aims to introduce the field of ionizing radiation as it relates to the degradation and recycling of cellulose and its derivatives. The review discusses the main mechanisms of the radiolytic sessions of the cellulose molecules in the presence and absence of water. During the radiolysis of cellulose, in the absence of water, the primary and secondary electrons from the electron beam, and the photoelectric, Compton effect electrons from gamma radiolysis attack the glycosidic bonds (C-O-C) on the backbone of the cellulose chains. This radiation-induced session results in the formation of alkoxyl radicals and C-centered radicals. In the presence of water, the radiolytically produced hydroxyl radicals (●OH) will abstract hydrogen atoms, leading to the formation of C-centered radicals, which undergo various reactions leading to the backbone session of the cellulose. Based on the structures of the radiolytically produced free radicals in presence and absence of water, covalent grafting of vinyl monomers on the cellulose backbone is inconceivable.

9.
Polymers (Basel) ; 14(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406198

RESUMEN

Ultra-high molar mass polyethylene (UHMMPE) is commonly used for ballistic-resistant body armor applications due to the superior strength of the fibers fabricated from this material combined with its low density. However, polymeric materials are susceptible to thermally induced degradation during storage and use, which can reduce the high strength of these fibers, and, thus, negatively impact their ballistic resistance. The objective of this work is to advance the field of lightweight and soft UHMMPE inserts used in various types of ballistic resistant-body armor via elucidating the mechanisms of chemical degradation and evaluating this chemical degradation, as well as the corresponding physical changes, of the UHMMPE fibers upon thermal aging. This is the first comprehensive study on thermally aged UHMMPE fibers that measures their decrease in the average molar mass via high-temperature size exclusion chromatography (HT-SEC) analysis. The decrease in the molar mass was further supported by the presence of carbon-centered free radicals in the polyethylene that was detected using electron paramagnetic resonance (EPR) spectroscopy. These carbon-centered radicals result from a cascade of thermo-oxidative reactions that ultimately induce C-C ruptures along the backbone of the polymer. Changes in the crystalline morphology of the UHMMPE fibers were also observed through wide-angle X-ray diffraction (WAXS), showing an increase in the amorphous regions, which promotes oxygen diffusion into the material, specifically through these areas. This increase in the amorphous fraction of the highly oriented polyethylene fibers has a synergistic effect with the thermo-oxidative degradation processes and contributes significantly to the decrease in their molar mass.

10.
Pharmaceutics ; 13(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834180

RESUMEN

Nanogels-internally crosslinked macromolecules-have a growing palette of potential applications, including as drug, gene or radioisotope nanocarriers and as in vivo signaling molecules in modern diagnostics and therapy. This has triggered considerable interest in developing new methods for their synthesis. The procedure based on intramolecular crosslinking of polymer radicals generated by pulses of ionizing radiation has many advantages. The substrates needed are usually simple biocompatible polymers and water. This eliminates the use of monomers, chemical crosslinking agents, initiators, surfactants, etc., thus limiting potential problems with the biocompatibility of products. This review summarizes the basics of this method, providing background information on relevant aspects of polymer solution thermodynamics, radiolysis of aqueous solutions, generation and reactions of polymer radicals, and the non-trivial kinetics and mechanism of crosslinking, focusing on the main factors influencing the outcomes of the radiation synthesis of nanogels: molecular weight of the starting polymer, its concentration, irradiation mode, absorbed dose of ionizing radiation and temperature. The most important techniques used to perform the synthesis, to study the kinetics and mechanism of the involved reactions, and to assess the physicochemical properties of the formed nanogels are presented. Two select important cases, the synthesis of nanogels based on polyvinylpyrrolidone (PVP) and/or poly(acrylic acid) (PAA), are discussed in more detail. Examples of recent application studies on radiation-synthesized PVP and PAA nanogels in transporting drugs across the blood-brain barrier and as targeted radioisotope carriers in nanoradiotherapy are briefly described.

11.
Front Chem ; 9: 803347, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087792

RESUMEN

The major societal problem of polymeric waste necessitates new approaches to break down especially challenging discarded waste streams. Gamma radiation was utilized in conjunction with varying solvent environments in an attempt to discern the efficacy of radiolysis as a tool for the deliberate degradation of model network polyesters. Our EPR results demonstrated that gamma radiolysis of neat resin and in the presence of four widely used solvents induces glycosidic scissions on the backbone of the polyester chains. EPR results clearly show the formation of alkoxy radicals and C-centered radicals as primary intermediate radiolytic products. Despite the protective role of the phenyl groups on the backbone of the radiation-induced polyester chains, the radiolytic-glycosidic scissions predominate. Among the following three solvents used in this study (water, isopropyl alcohol, and dichloromethane), the highest radiolytic yield of glycosidic scission was achieved using water. The •OH radicals produced in the radiolysis of phenyl unsaturated polyester aqueous suspensions very rapidly abstract H atoms from the methylene group, which is followed by a very rapid glycosidic scission. The lowest glycosidic yield was found in the dichloromethane solutions of these polyester resins due to scavenging by the fast electron capture reactions.

12.
Polymers (Basel) ; 12(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266261

RESUMEN

Ionizing radiation has become the most effective way to modify natural and synthetic polymers through crosslinking, degradation, and graft polymerization. This review will include an in-depth analysis of radiation chemistry mechanisms and the kinetics of the radiation-induced C-centered free radical, anion, and cation polymerization, and grafting. It also presents sections on radiation modifications of synthetic and natural polymers. For decades, low linear energy transfer (LLET) ionizing radiation, such as gamma rays, X-rays, and up to 10 MeV electron beams, has been the primary tool to produce many products through polymerization reactions. Photons and electrons interaction with polymers display various mechanisms. While the interactions of gamma ray and X-ray photons are mainly through the photoelectric effect, Compton scattering, and pair-production, the interactions of the high-energy electrons take place through coulombic interactions. Despite the type of radiation used on materials, photons or high energy electrons, in both cases ions and electrons are produced. The interactions between electrons and monomers takes place within less than a nanosecond. Depending on the dose rate (dose is defined as the absorbed radiation energy per unit mass), the kinetic chain length of the propagation can be controlled, hence allowing for some control over the degree of polymerization. When polymers are submitted to high-energy radiation in the bulk, contrasting behaviors are observed with a dominant effect of cross-linking or chain scission, depending on the chemical nature and physical characteristics of the material. Polymers in solution are subject to indirect effects resulting from the radiolysis of the medium. Likewise, for radiation-induced polymerization, depending on the dose rate, the free radicals generated on polymer chains can undergo various reactions, such as inter/intramolecular combination or inter/intramolecular disproportionation, b-scission. These reactions lead to structural or functional polymer modifications. In the presence of oxygen, playing on irradiation dose-rates, one can favor crosslinking reactions or promotes degradations through oxidations. The competition between the crosslinking reactions of C-centered free radicals and their reactions with oxygen is described through fundamental mechanism formalisms. The fundamentals of polymerization reactions are herein presented to meet industrial needs for various polymer materials produced or degraded by irradiation. Notably, the medical and industrial applications of polymers are endless and thus it is vital to investigate the effects of sterilization dose and dose rate on various polymers and copolymers with different molecular structures and morphologies. The presence or absence of various functional groups, degree of crystallinity, irradiation temperature, etc. all greatly affect the radiation chemistry of the irradiated polymers. Over the past decade, grafting new chemical functionalities on solid polymers by radiation-induced polymerization (also called RIG for Radiation-Induced Grafting) has been widely exploited to develop innovative materials in coherence with actual societal expectations. These novel materials respond not only to health emergencies but also to carbon-free energy needs (e.g., hydrogen fuel cells, piezoelectricity, etc.) and environmental concerns with the development of numerous specific adsorbents of chemical hazards and pollutants. The modification of polymers through RIG is durable as it covalently bonds the functional monomers. As radiation penetration depths can be varied, this technique can be used to modify polymer surface or bulk. The many parameters influencing RIG that control the yield of the grafting process are discussed in this review. These include monomer reactivity, irradiation dose, solvent, presence of inhibitor of homopolymerization, grafting temperature, etc. Today, the general knowledge of RIG can be applied to any solid polymer and may predict, to some extent, the grafting location. A special focus is on how ionizing radiation sources (ion and electron beams, UVs) may be chosen or mixed to combine both solid polymer nanostructuration and RIG. LLET ionizing radiation has also been extensively used to synthesize hydrogel and nanogel for drug delivery systems and other advanced applications. In particular, nanogels can either be produced by radiation-induced polymerization and simultaneous crosslinking of hydrophilic monomers in "nanocompartments", i.e., within the aqueous phase of inverse micelles, or by intramolecular crosslinking of suitable water-soluble polymers. The radiolytically produced oxidizing species from water, •OH radicals, can easily abstract H-atoms from the backbone of the dissolved polymers (or can add to the unsaturated bonds) leading to the formation of C-centered radicals. These C-centered free radicals can undergo two main competitive reactions; intramolecular and intermolecular crosslinking. When produced by electron beam irradiation, higher temperatures, dose rates within the pulse, and pulse repetition rates favour intramolecular crosslinking over intermolecular crosslinking, thus enabling a better control of particle size and size distribution. For other water-soluble biopolymers such as polysaccharides, proteins, DNA and RNA, the abstraction of H atoms or the addition to the unsaturation by •OH can lead to the direct scission of the backbone, double, or single strand breaks of these polymers.

13.
Polymers (Basel) ; 11(5)2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31137768

RESUMEN

To improve properties such as thermal conductivity, low temperature thermal strain, and creep resistance of ultra-high molar mass polyethylene (UHMMPE) fibers, several researchers have previously undertaken efforts to crosslink these fibers using radiation. Ionizing radiation is commonly used to crosslink bulk UHMMPE in other applications, such as artificial joints. However, UHMMPE fibers differ from bulk UHMMPE in that they have a higher crystallinity (approximately 85% to 90%) and are very highly oriented during manufacturing in which the fibers are stretched 50 to 100 times their original length. Thus, the amorphous fraction of the UHMMPE fibers is also highly ordered. Several experiments were conducted to crosslink the UHMMPE fibers using both low dose rate (gamma) and high dose rate (electron beam) irradiation, all in the absence of oxygen. In all cases, the tensile strength of the fiber was greatly reduced by the irradiation. The oxidation index was also measured for the irradiated samples, and oxidation was not found to play a major role in the reduction of tensile strength in the fibers after irradiation. While this work did not achieve the desired result of improving the mechanical properties of the UHMMPE fiber, a significant result was found. The electron paramagnetic resonance (EPR) spectrum of the UHMMPE fibers was measured shortly after irradiation, and a mixture of allyl and alkyl radicals were detected. The irradiated samples were stored in dark ambient conditions for at least six years, then reexamined using EPR for free radical characterization. Surprisingly, the gamma-irradiated samples showed clear evidence of long-lived polyenyl radicals present in the material. Free radicals are very reactive species that will typically migrate to the surface of the crystalline domain and decay in a relatively short time through various reactions in the amorphous regions. It is hypothesized herein that due to the high crystallinity and large anisotropy of the highly drawn UHMMPE fiber, the polyenyl radicals were trapped in the crystal phase and were unable to migrate and decay. An experiment was performed to test this hypothesis, by which samples of the irradiated fibers were heated to temperatures above first the alpha relaxation and then melting point of polyethylene, and EPR measurements were taken. Results showed that the polyenyl radical signal persisted below the Tm, but was rapidly eliminated upon melting of the crystals. These experiments support the hypothesis that the long-lived polyenyl radicals are trapped in the crystalline region of the polyethylene fibers.

14.
Radiat Res ; 192(2): 219-230, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31246533

RESUMEN

Primary amines form a key component of a well-studied mechanism for capturing carbon dioxide (CO2) from the atmosphere. This study comprises a single-step synthesis of a novel sorbent for CO2 by grafting monomers rich in primary amines to three commercial-grade fabrics: polyethylene terephthalate, high-density polyethylene and nylon 6. An initial evaluation of the sorbency of the chosen monomers, allylamine and butenylamine, qualitatively confirmed their ability to extract CO2 from the atmosphere. Six novel copolymers, comprised of each of the three fabrics grafted with one of each monomer, were synthesized using radiation-induced graft copolymerization through electron beam irradiation. All fabrics achieved greater grafting with butenylamine compared to allylamine, likely given the closer proximity of the primary amine to the radical on the latter's structure. Primary amines can stabilize radicals, preventing copolymerization reactions. Characterization of sorbency revealed that the majority of the grafted amines likely reacted to adsorb CO2. Therefore, the amount of amine grafted comprises the primary limiting factor on the sorbents' CO2 capacity.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/química , Polimerizacion , Textiles , Adsorción , Aminas/química , Técnicas de Química Sintética , Radioquímica
15.
Polymers (Basel) ; 10(6)2018 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-30966706

RESUMEN

This article demonstrates that ionizing radiation induces simultaneous crosslinking and scission in poly(trimethylene carbonate-co-d-lactide) diblock and random copolymers. Copolymer films were electron-beam (EB) irradiated up to 300 kGy under anaerobic conditions and subsequently examined by evaluation of their structure (FT-IR, NMR), molecular weight, intrinsic viscosities, and thermal properties. Radiation chemistry of the copolymers is strongly influenced by the content of ester linkages of the lactide component. At low lactide content, crosslinking reaction is the dominant one; however, as the lactide ratio increases, the ester linkages scission becomes more competent and exceeds the crosslinking. Electron paramagnetic resonance (EPR) measurements indicate that higher content of amorphous carbonate units in copolymers leads to a reduction in free radical yield and faster radical decay as compared to lactide-rich compositions. The domination of scission of ester bonds was confirmed by identifying the radiolytically produced alkoxyl and acetyl radicals, the latter being more stable due to its conjugated structure.

16.
Radiat Res ; 190(3): 309-321, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29912620

RESUMEN

During the pulsed-electron beam direct grafting of neat styrene onto poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) substrate, the radiolytically-produced styryl and carbon-centered FEP radicals undergo various desired and undesired competing reactions. In this study, a high-dose rate is used to impede the undesired free radical homopolymerization of styrene and ensure uniform covalent grafting through 125-µm FEP films. This outweighs the enhancement of the undesired crosslinking reactions of carbon-centered FEP radicals and the dimerization of the styryl radicals. The degree of uniform grafting through 125-µm FEP films increases from ≈8%, immediately after pulsed electron irradiation to 33% with the subsequent thermal treatment exceeding the glass transition temperature of FEP of 39°C. On the contrary, steady-state radiolysis using 60Co gamma radiolysis, shows that the undesired homopolymerization of the styrene has become the predominant reaction with a negligible degree of grafting. Time-resolved fast kinetic measurements on pulsed neat styrene show that the styryl radicals undergo fast decays via propagation homopolymerization and termination reactions at an observed reaction rate constant of 5 × 108 l · mol-1 · s-1. The proton conductivity of 25-µm film at 80°C is 0.29 ± 0.01 s cm-1 and 0.007 s cm-1 at relative humidity of 92% and 28%, respectively. The aims of this work are: 1. electrolyte membranes are prepared via grafting initiated by a pulsed electron beam; 2. postirradiation heat-treated membranes are uniformly grafted, ideal for industry; 3. High dose rate is the primary parameter to promote the desired reactions; 4. measurement of kinetics of undesired radiation-induced styrene homopolymerization; and 5. The conductivity of prepared membranes is on par or higher than industry standards.


Asunto(s)
Electrólitos/efectos de la radiación , Membranas Artificiales , Polimerizacion/efectos de la radiación , Polímeros/química , Electrólitos/química , Electrones , Radicales Libres/química , Radicales Libres/efectos de la radiación , Rayos gamma , Cinética , Polímeros/efectos de la radiación , Politetrafluoroetileno/análogos & derivados , Politetrafluoroetileno/química , Politetrafluoroetileno/efectos de la radiación , Estireno/química , Estireno/efectos de la radiación
17.
Phys Med Biol ; 52(17): N367-74, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17762072

RESUMEN

The new nanodosimetry-based linear-quadratic (LQ) formula has been reviewed for mixed-LET irradiation. V-79 Chinese hamster cells have been irradiated with a mixed-LET field of fission neutrons and gamma rays at the University of Maryland Training Reactor (MUTR). The results show that the experimental survival curve agrees well with that predicted by the new nanodosimetry-based LQ model. The experimental study described in this note, therefore, serves as a validation for the new model to be used for mixed-LET radiotherapies, e.g. 252Cf brachytherapy.


Asunto(s)
Bioensayo/métodos , Supervivencia Celular/efectos de la radiación , Modelos Biológicos , Nanotecnología/métodos , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Animales , Simulación por Computador , Cricetinae , Cricetulus , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Neutrones , Dosis de Radiación
18.
Ind Eng Chem Res ; 55(15): 4179-5214, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29720786

RESUMEN

In order to test the effectiveness of oxalate-based polymeric adsorbents in the recovery of uranium from seawater, diallyl oxalate (DAOx) was grafted onto nylon 6 fabrics by exposing the fabric, immersed in pure liquid DAOx or in a surfactant-stabilized dispersion of DAOx in water, to electron beam or gamma radiation. Following drying and weighing to determine the degree of grafting (DoG), the presence of oxalate in the fabrics was verified using XPS. Zeta potential measurements showed the fabric surfaces to be negatively charged. The fabrics were tested by rotating them for 7 days in a rotary agitator with actual seawater spiked with 0.2 or 1.0 mg∙L-1 uranium. The fraction of uranium in the solution which was removed due to uptake on the fabrics was found to rise with increasing DoG at both uranium concentrations. EDS measurements were used to map the distribution of adsorbed uranium on the polymeric fibers.

19.
Int J Radiat Biol ; 90(6): 480-5, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24605770

RESUMEN

PURPOSE: The efficacy of a boron-containing cholesteryl ester compound (BCH) as a boron neutron capture therapy (BNCT) agent for the targeted irradiation of PC-3 human prostate cancer cells was examined. MATERIALS AND METHODS: Liposome-based delivery of BCH was quantified with inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC). Cytotoxicity of the BCH-containing liposomes was evaluated with neutral red, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), and lactate dehydrogenase assays. Colony formation assays were utilized to evaluate the decrease in cell survival due to high-linear energy transfer (LET) particles resulting from (10)B thermal neutron capture. RESULTS: BCH delivery by means of encapsulation in a lipid bilayer resulted in a boron uptake of 35.2 ± 4.3 µg/10(9) cells, with minimal cytotoxic effects. PC-3 cells treated with BCH and exposed to a 9.4 × 10(11) n/cm(2) thermal neutron fluence yielded a 20-25% decrease in clonogenic capacity. The decreased survival is attributed to the generation of high-LET α particles and (7)Li nuclei that deposit energy in densely ionizing radiation tracks. CONCLUSION: Liposome-based delivery of BCH is capable of introducing sufficient boron to PC-3 cells for BNCT. High-LET α particles and (7)Li nuclei generated from (10)B thermal neutron capture significantly decrease colony formation ability in the targeted PC-3 cells.


Asunto(s)
Terapia por Captura de Neutrón de Boro/métodos , Neoplasias de la Próstata/radioterapia , Boro/administración & dosificación , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Ésteres del Colesterol/administración & dosificación , Sistemas de Liberación de Medicamentos , Humanos , Isótopos/administración & dosificación , Transferencia Lineal de Energía , Liposomas , Masculino , Neoplasias de la Próstata/patología
20.
Appl Radiat Isot ; 68(4-5): 679-82, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20149672

RESUMEN

A nondestructive test method for detecting chlorides in concrete has been developed based on prompt gamma neutron activation (PGNA). Its performance has been modeled using a hybrid MCNP/optical ray tracing approach. Since the chlorides often come from de-icing salts applied to the concrete surface, the Cl concentration has a non-linear depth profile which is typically modeled by the erfc function. The signals from this distribution have been simulated for several significant Cl capture peaks to estimate the erfc function parameters.


Asunto(s)
Cloro/análisis , Cloro/química , Materiales de Construcción/análisis , Modelos Químicos , Análisis de Activación de Neutrones/métodos , Simulación por Computador , Difusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA