Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Mol Pathol ; 137: 104903, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772208

RESUMEN

Multiple sclerosis (MS) is a chronic demyelinating autoimmune neurodegenerative disorder for which no specific blood biomarker is available. MicroRNAs (miRNAs) have been investigated for their diagnostic potential in MS. However, MS-associated miRNAs are rarely replicated in different MS populations, thus impeding their use in clinical testing. Here, we evaluated the fold expression of seven reported MS miRNAs associated with MS incidence and clinical characteristics in 76 MS patients and 75 healthy control plasma samples. We found miR-23a-3p to be upregulated in relapsing-remitting MS (RRMS), while miR-326 was downregulated. MiR-150-5p and -320a-3p were significantly downregulated in secondary progressive MS (SPMS) patients compared to RRMS. High disability was associated with low miR-320a-3p, whereas low BDNF levels were associated with upregulation of miR-150-5p and downregulation of miR-326 expression in the total cohort. MiR-23a-3p and miR-326 showed significant diagnostic sensitivity, specificity, and accuracy for RRMS diagnosis. In addition, miR-150-5p and miR-320a-3p had comparable significant diagnostic test performance metrics distinguishing SPMS from RRMS. Therefore, there is potential for including miR-23a-3p and miR-326 in an RRMS diagnostic miRNA panel. Moreover, we have shown that miR-150-5p and miR-320a-3p could be novel RRMS conversion to SPMS biomarkers. The use of these miRNAs in MS diagnosis and prognosis warrants further investigation.


Asunto(s)
Biomarcadores , MicroARNs , Esclerosis Múltiple , Humanos , MicroARNs/sangre , MicroARNs/genética , Masculino , Femenino , Biomarcadores/sangre , Adulto , Persona de Mediana Edad , Esclerosis Múltiple/genética , Esclerosis Múltiple/sangre , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/sangre , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Estudios de Casos y Controles , Factor Neurotrófico Derivado del Encéfalo/sangre , Factor Neurotrófico Derivado del Encéfalo/genética , Esclerosis Múltiple Crónica Progresiva/sangre , Esclerosis Múltiple Crónica Progresiva/genética , Esclerosis Múltiple Crónica Progresiva/diagnóstico
2.
Med Princ Pract ; 33(2): 157-163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38228106

RESUMEN

OBJECTIVE: Despite the high prevalence of type 2 diabetes mellitus (T2DM) and obesity in the region, reports are limited on genetic risk factors associated with T2DM risk in Kuwait. Our aim was to investigate the association of reported FTO and TCF7L2 T2DM genetic risk variants in Kuwaiti T2DM patients. SUBJECTS AND METHODS: FTO rs9939609 and TCF7L2 rs7903146 variants were genotyped in 203 T2DM patients and 162 healthy controls. Data analysis included Fisher's exact test, χ2 test, and linear and logistic regression analyses. RESULTS: FTO rs9939609 (AA) and TCF7L2 rs7903146 (TT) genotypes associated with T2DM risk among Kuwaitis (p = 0.0016 and p < 0.0001; respectively). Both variants had the strongest association with T2DM risk in an autosomal recessive inheritance model (FTO rs9939609A: odds ratio (OR) 2.136, 95% confidence interval (CI): 1.21-3.67, p = 0.0075; TCF7L2 rs7903146T: OR 3.283, 95% CI: 1.92-5.76, p < 0.0001). Moreover, rs7903146T associated with risk of peripheral neuropathy (ß = 0.735, 95% CI: 0.514-0.96, p < 0.001) and risk of myocardial infarction (ß = 0.36, 95% CI: 0.024-0.7, p = 0.036) in T2DM patients. CONCLUSION: The increased susceptibility of Kuwaitis to T2DM is influenced by the same common genetic factors found in other T2DM populations. Further investigations of other T2DM genetic risk factors in Kuwait should refine and further support the clinical utility of a genetic risk score in predicting T2DM risk in a high-risk population such as Kuwait.

3.
Int J Vitam Nutr Res ; 91(1-2): 124-132, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31623531

RESUMEN

Vitamin D deficiency is an emerging risk factor for breast cancer suggesting its role in breast cancer pathogenesis. Recent evidence suggests vitamin D receptor (VDR) expression is a prognosis predictor in breast cancer. We set out to determine the status of VDR expression in histologically characterized breast cancers, and whether common genetic variants modify VDR expression in breast cancer. One-hundred and twenty Kuwaiti female breast cancer fixed tissues were assessed for VDR expression to identify the level and location of its expression by immunohistochemistry. VDR variants (rs731236, rs2228570), and vitamin D binding protein (VDBP) variants (rs4588, rs7041) genotypes were ascertained in breast cancer specimens using Taqman genotyping assays. VDR nuclear expression correlated with low grade tumors (p = 0.01), whereas cytoplasmic expression correlated with lymph node positive tumors (p = 0.03). Absence of VDR expression was a marker for high-grade dedifferentiated tumors (p = 0.01). VDBP rs7041 associated with breast cancer risk (OR 1.92, 95% CI: 1.34 - 2.73; p = 0.0004), and VDR rs2228570 correlated with increased VDR cytoplasmic expression (p < 0.0001). In conclusion, VDR expression is altered in breast cancer confirming its involvement in breast cancer progression. Genetic factors appear to play a role in breast cancer risk, and may modify tumor sensitization to vitamin D.


Asunto(s)
Neoplasias de la Mama , Receptores de Calcitriol , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Receptores de Calcitriol/genética , Vitamina D
4.
BMC Microbiol ; 19(1): 294, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842755

RESUMEN

BACKGROUND: Thymol is a phenolic compound used for its wide spectrum antimicrobial activity. There is a limited understanding of the antimicrobial mechanisms underlying thymol activity. To investigate this, E. coli strain JM109 was exposed to thymol at sub-lethal concentrations and after 16 rounds of exposure, isolates with a 2-fold increased minimal inhibitory concentration (MIC) were recovered (JM109-Thyr). The phenotype was stable after multiple sub-cultures without thymol. RESULTS: Cell morphology studies by scanning electron microscopy (SEM) suggest that thymol renders bacterial cell membranes permeable and disrupts cellular integrity. 1H Nuclear magnetic resonance (NMR) data showed an increase in lactate and the lactic acid family amino acids in the wild type and JM109-Thyr in the presence of thymol, indicating a shift from aerobic respiration to fermentation. Sequencing of JM109-Thyr defined multiple mutations including a stop mutation in the acrR gene resulting in a truncation of the repressor of the AcrAB efflux pump. AcrAB is a multiprotein complex traversing the cytoplasmic and outer membrane, and is involved in antibiotic clearance. CONCLUSIONS: Our data suggests that thymol tolerance in E. coli induces morphological, metabolic and genetic changes to adapt to thymol antimicrobial activity.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Timol/farmacología , Permeabilidad de la Membrana Celular , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fermentación , Regulación Bacteriana de la Expresión Génica , Lactatos/metabolismo , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , Mutación , Fenotipo , Proteínas Represoras/genética
5.
Med Princ Pract ; 27(2): 145-151, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29402776

RESUMEN

OBJECTIVE: To investigate the effect of the common fat mass and obesity-associated (FTO) gene polymorphism rs9939609 on body mass index (BMI) in one of the most obese populations worldwide. SUBJECTS AND METHODS: Genotypic data for FTO rs9939609 were available for 1,034 unrelated Kuwaiti adults obtained from Kuwait's Dasman Diabetes Institute and Kuwait University. The association between the FTO polymorphism with BMI as continuous and categorical (normal BMI [< 25] vs. overweight/obese [> 25]) variables was analyzed using both linear and logistic regression models, respectively, with the assumption of both dominant and additive genetic models performed using the SNPassoc package from R statistics. RESULTS: The A allele was associated with increased BMI (ß = 1.21; 95% CI = 0.16-2.26; p = 0.023). In concordance, the categorical BMI (normal vs. overweight/obese) also showed a significant association between the A allele and overweight/obesity (OR = 1.47; 95% CI = 1.01-2.12; p = 0.041). However, no association between the FTO variant was observed with cardiometabolic traits. CONCLUSION: We observed an association between the common FTO rs9939609 polymorphism and increased BMI (overweight/obesity) in Kuwaiti adults, which is consistent with previous research in other populations. Our findings encourage further investigation of genetic variants to elucidate the mechanisms involved in the development of obesity in such an obesogenic population.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Obesidad/epidemiología , Obesidad/genética , Adulto , Anciano , Índice de Masa Corporal , Estudios de Cohortes , Femenino , Genotipo , Humanos , Kuwait/epidemiología , Masculino , Persona de Mediana Edad , Polimorfismo Genético , Análisis de Regresión
6.
Exp Mol Pathol ; 103(3): 237-241, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29108879

RESUMEN

Multiple Sclerosis (MS) is a complex autoimmune neuro-inflammatory disorder characterized by persistent MS plaques in the central nervous system. Resolution of MS plaques is dependent on the remyelination competence of surviving oligodendrocytes and surrounding environment. Here, we assessed myelination modulators in a 100 MS patients against 77 healthy controls. Plasma fractions were used for the assessment of insulin growth factor binding protein1 (IGFBP1), brain-derived neurotrophic factor (BDNF), and lipocalin2 (LCN2) using a Luminex multiplex assay, whereas neurofilament light chain (NF-L) was assessed with an enzyme-linked immunosorbent assay. Circulating levels of IGFBP1, LCN2 and NF-L were significantly higher in MS patients (p<0.01). Whereas BDNF levels were significantly lower in MS patients (p=0.014). MS Female patients had significantly higher levels of IGFBP1 compared to male MS patients (p=0.006). MS patients treated with fingolimod had higher LCN2 levels compared to those on natalizumab (r=0.25, p=0.03). Higher NF-L levels associated with clinically isolated syndrome's (CIS) conversion into MS (p=0.002). We conclude that low BDNF and high LCN2 and NF-L levels are associated with MS pathogenesis, and high IGFBP1level is a biomarker for female MS only, suggesting different MS progression pathways between the sexes. LCN2 is a candidate predictor of response to natalizumab treatment, and NF-L is a candidate predictor of CIS conversion into MS.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/sangre , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Lipocalina 2/sangre , Esclerosis Múltiple/sangre , Proteínas de Neurofilamentos/sangre , Adulto , Biomarcadores/sangre , Enfermedades Desmielinizantes/sangre , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/fisiopatología , Femenino , Clorhidrato de Fingolimod/administración & dosificación , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/fisiopatología , Natalizumab/administración & dosificación , Remielinización/efectos de los fármacos , Caracteres Sexuales
7.
Int J Mol Sci ; 17(5)2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27136531

RESUMEN

Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Metastasis remains the primary cause of CRC death. Predicting the possibility of metastatic relapse in early-stage CRC is of paramount importance to target therapy for patients who really need it and spare those with low-potential of metastasis. Ninety-six stage II CRC cases were stratified using high-resolution array comparative genomic hybridization (aCGH) data based on a predictive survival algorithm and supervised clustering. All genes included within the resultant copy number aberrations were each interrogated independently at mRNA level using CRC expression datasets available from public repositories, which included 1820 colon cancers, and 167 normal colon tissues. Reduced mRNA expression driven by copy number losses and increased expression driven by copy number gains revealed 42 altered transcripts (29 reduced and 13 increased transcripts) associated with metastatic relapse, short disease-free or overall survival, and/or epithelial to mesenchymal transition (EMT). Resultant genes were classified based on gene ontology (GO), which identified four functional enrichment groups involved in growth regulation, genomic integrity, metabolism, and signal transduction pathways. The identified 42 genes may be useful for predicting metastatic relapse in stage II CRC. Further studies are necessary to validate these findings.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Anciano , Algoritmos , Aberraciones Cromosómicas , Análisis por Conglomerados , Neoplasias Colorrectales/mortalidad , Hibridación Genómica Comparativa , Bases de Datos Genéticas , Transición Epitelial-Mesenquimal , Femenino , Humanos , Masculino , Repeticiones de Microsatélite/genética , Persona de Mediana Edad , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Modelos de Riesgos Proporcionales , Tasa de Supervivencia
8.
Carcinogenesis ; 36 Suppl 1: S19-37, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106138

RESUMEN

Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes.


Asunto(s)
Carcinogénesis/inducido químicamente , Carcinógenos/administración & dosificación , Senescencia Celular/efectos de los fármacos , Sustancias Peligrosas/efectos adversos , Animales , Exposición a Riesgos Ambientales/efectos adversos , Humanos
9.
Carcinogenesis ; 36 Suppl 1: S203-31, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106140

RESUMEN

Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the development and selection of cancer are suggested.


Asunto(s)
Carcinogénesis/inducido químicamente , Carcinogénesis/metabolismo , Carcinógenos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/metabolismo , Animales , Humanos , Neoplasias/etiología
10.
Carcinogenesis ; 36 Suppl 1: S232-53, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106141

RESUMEN

An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented.


Asunto(s)
Carcinógenos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Inflamación/inducido químicamente , Inflamación/inmunología , Neoplasias/inducido químicamente , Neoplasias/inmunología , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Neoplasias/etiología , Riesgo
11.
Carcinogenesis ; 36 Suppl 1: S111-27, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26002081

RESUMEN

An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-ß, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression.


Asunto(s)
Sustancias Peligrosas/efectos adversos , Sustancias Peligrosas/inmunología , Evasión Inmune/efectos de los fármacos , Vigilancia Inmunológica/efectos de los fármacos , Neoplasias/inducido químicamente , Neoplasias/inmunología , Animales , Ambiente , Humanos , Evasión Inmune/inmunología , Vigilancia Inmunológica/inmunología , Neoplasias/etiología
12.
Carcinogenesis ; 36 Suppl 1: S160-83, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106136

RESUMEN

Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Microambiente Tumoral/efectos de los fármacos , Animales , Carcinogénesis/inducido químicamente , Humanos , Neoplasias/inducido químicamente
13.
Carcinogenesis ; 36 Suppl 1: S2-18, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106139

RESUMEN

As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/etiología , Animales , Humanos , Transducción de Señal/efectos de los fármacos
14.
Carcinogenesis ; 36 Suppl 1: S184-202, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106137

RESUMEN

One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.


Asunto(s)
Carcinogénesis/inducido químicamente , Carcinógenos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/etiología , Neovascularización Patológica/inducido químicamente , Animales , Humanos
15.
Carcinogenesis ; 36 Suppl 1: S128-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106135

RESUMEN

The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.


Asunto(s)
Carcinógenos Ambientales/efectos adversos , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Animales , Progresión de la Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos
16.
Carcinogenesis ; 36 Suppl 1: S38-60, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106143

RESUMEN

The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.


Asunto(s)
Carcinógenos Ambientales/efectos adversos , Proliferación Celular/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/etiología , Transducción de Señal/efectos de los fármacos , Animales , Humanos
17.
Carcinogenesis ; 36 Suppl 1: S61-88, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106144

RESUMEN

Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.


Asunto(s)
Carcinogénesis/inducido químicamente , Carcinógenos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Inestabilidad Genómica/efectos de los fármacos , Sustancias Peligrosas/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/etiología , Animales , Humanos
18.
Carcinogenesis ; 36 Suppl 1: S89-110, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106145

RESUMEN

Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.


Asunto(s)
Carcinogénesis/inducido químicamente , Carcinógenos Ambientales/efectos adversos , Muerte Celular/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/etiología , Animales , Homeostasis/efectos de los fármacos , Humanos
19.
Heliyon ; 10(12): e32685, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975190

RESUMEN

Multiple sclerosis (MS) is a complex, neurodegenerative chronic disorder. Circulating diagnostic biomarkers for MS have remained elusive, and those proposed so far have limited sensitivity and specificity to MS. Plasma-circulating microRNAs (miRNAs) have advantageous biochemical and physiological attributes that can be utilized in clinical testing and disease monitoring. MS miRNA expression microarray datasets analysis resulted in four candidate miRNAs that were assessed for their expression in a separate MS case-control study. Only miR-24-3p was downregulated in all MS patients compared to healthy controls. MiR-484 was significantly upregulated in relapsing-remitting MS (RRMS) patients compared to healthy controls. Mir-146-5p and miR-484 were significantly downregulated in secondary-progressive MS (SPMS) compared to RRMS. MiR-484 downregulation was associated with worsening disability and increased lipocalin-2 levels. Mir-342-3p and miR-24-3p downregulation were associated with increased semaphorin-3A levels in MS and RRMS patients. In conclusion, mir-24-3p downregulation is diagnostic of MS, and mir-484 upregulation and downregulation are potential biomarkers for RRMS and SPMS conversion, respectively. The differential expression of miR-146a-3p in MS subtypes suggests its potential as an SPMS transition biomarker. The association of downregulated mir-24-3p and mir-484 with increased neurodegeneration biomarkers suggests they play a role in MS pathogenesis and neurodegeneration.

20.
Horm Mol Biol Clin Investig ; 43(3): 273-280, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417932

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) and obesity are prevalent in Kuwait. Vitamin D (VD) deficiency and leptin resistance are risk factors for both disorders. A correlation between the two risk factors has been suggested albeit inconsistently reported. Our objective was to determine the effect and association of VD and leptin levels and their related common variants with T2DM. METHODS: This case-control study included 203 Kuwaiti T2DM patients and 162 healthy Kuwaiti controls. Leptin and VD levels were measured using enzyme linked immunosorbent assays. Genotyping of LEP rs7799039, LEPR rs1137101, VDR rs2228570 and rs731236 was performed using Taqman genotyping assays. RESULTS: Leptin levels were higher in T2DM patients than controls, but vitamin D levels did not differ. No correlation was found between the levels of the two hormones. VDR rs731236G associated with T2DM risk (Odds ratio 1.66, p=0.0008). VDR haplotype analysis revealed GG/AA, GA/AA or GG/AG to associate with T2DM risk (p=0.01) and increased risk of diabetic neuropathy (p=0.002). VDR rs2228570GG associated with leptin levels in T2DM (p=0.01). Effect of LEP rs7799039 on leptin (p=0.01) and VD levels (p=0.02) was only evident in healthy controls. CONCLUSIONS: VDR rs731236G is associated with T2DM risk in Kuwait, and a VDR haplotype of a less active, low expressing VDR is associated with T2DM and diabetic neuropathy risk. Common variants in leptin and VD related genes appear to mediate the suggested positive correlation of both hormones however their influence is disrupted in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Deficiencia de Vitamina D , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Neuropatías Diabéticas/complicaciones , Predisposición Genética a la Enfermedad , Humanos , Kuwait/epidemiología , Leptina/genética , Polimorfismo de Nucleótido Simple , Receptores de Calcitriol , Vitamina D , Deficiencia de Vitamina D/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA