Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 598(7880): 348-352, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34552244

RESUMEN

The determination of molecular features that mediate clinically aggressive phenotypes in prostate cancer remains a major biological and clinical challenge1,2. Recent advances in interpretability of machine learning models as applied to biomedical problems may enable discovery and prediction in clinical cancer genomics3-5. Here we developed P-NET-a biologically informed deep learning model-to stratify patients with prostate cancer by treatment-resistance state and evaluate molecular drivers of treatment resistance for therapeutic targeting through complete model interpretability. We demonstrate that P-NET can predict cancer state using molecular data with a performance that is superior to other modelling approaches. Moreover, the biological interpretability within P-NET revealed established and novel molecularly altered candidates, such as MDM4 and FGFR1, which were implicated in predicting advanced disease and validated in vitro. Broadly, biologically informed fully interpretable neural networks enable preclinical discovery and clinical prediction in prostate cancer and may have general applicability across cancer types.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas de Ciclo Celular/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Masculino , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptores Androgénicos/genética , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor/genética
2.
Am J Hum Genet ; 109(6): 1026-1037, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35512711

RESUMEN

More knowledge is needed regarding germline predisposition to Ewing sarcoma to inform biological investigation and clinical practice. Here, we evaluated the enrichment of pathogenic germline variants in Ewing sarcoma relative to other pediatric sarcoma subtypes, as well as patterns of inheritance of these variants. We carried out European-focused and pan-ancestry case-control analyses to screen for enrichment of pathogenic germline variants in 141 established cancer predisposition genes in 1,147 individuals with pediatric sarcoma diagnoses (226 Ewing sarcoma, 438 osteosarcoma, 180 rhabdomyosarcoma, and 303 other sarcoma) relative to identically processed cancer-free control individuals. Findings in Ewing sarcoma were validated with an additional cohort of 430 individuals, and a subset of 301 Ewing sarcoma parent-proband trios was analyzed for inheritance patterns of identified pathogenic variants. A distinct pattern of pathogenic germline variants was seen in Ewing sarcoma relative to other sarcoma subtypes. FANCC was the only gene with an enrichment signal for heterozygous pathogenic variants in the European Ewing sarcoma discovery cohort (three individuals, OR 12.6, 95% CI 3.0-43.2, p = 0.003, FDR = 0.40). This enrichment in FANCC heterozygous pathogenic variants was again observed in the European Ewing sarcoma validation cohort (three individuals, OR 7.0, 95% CI 1.7-23.6, p = 0.014), representing a broader importance of genes involved in DNA damage repair, which were also nominally enriched in individuals with Ewing sarcoma. Pathogenic variants in DNA damage repair genes were acquired through autosomal inheritance. Our study provides new insight into germline risk factors contributing to Ewing sarcoma pathogenesis.


Asunto(s)
Sarcoma de Ewing , Sarcoma , Niño , Daño del ADN/genética , Predisposición Genética a la Enfermedad , Células Germinativas , Mutación de Línea Germinal/genética , Humanos , Sarcoma/genética , Sarcoma de Ewing/genética
3.
Nature ; 540(7631): 114-118, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27905446

RESUMEN

Germ-cell tumours (GCTs) are derived from germ cells and occur most frequently in the testes. GCTs are histologically heterogeneous and distinctly curable with chemotherapy. Gains of chromosome arm 12p and aneuploidy are nearly universal in GCTs, but specific somatic genomic features driving tumour initiation, chemosensitivity and progression are incompletely characterized. Here, using clinical whole-exome and transcriptome sequencing of precursor, primary (testicular and mediastinal) and chemoresistant metastatic human GCTs, we show that the primary somatic feature of GCTs is highly recurrent chromosome arm level amplifications and reciprocal deletions (reciprocal loss of heterozygosity), variations that are significantly enriched in GCTs compared to 19 other cancer types. These tumours also acquire KRAS mutations during the development from precursor to primary disease, and primary testicular GCTs (TGCTs) are uniformly wild type for TP53. In addition, by functional measurement of apoptotic signalling (BH3 profiling) of fresh tumour and adjacent tissue, we find that primary TGCTs have high mitochondrial priming that facilitates chemotherapy-induced apoptosis. Finally, by phylogenetic analysis of serial TGCTs that emerge with chemotherapy resistance, we show how TGCTs gain additional reciprocal loss of heterozygosity and that this is associated with loss of pluripotency markers (NANOG and POU5F1) in chemoresistant teratomas or transformed carcinomas. Our results demonstrate the distinct genomic features underlying the origins of this disease and associated with the chemosensitivity phenotype, as well as the rare progression to chemoresistance. These results identify the convergence of cancer genomics, mitochondrial priming and GCT evolution, and may provide insights into chemosensitivity and resistance in other cancers.


Asunto(s)
Resistencia a Antineoplásicos , Genoma Humano/genética , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias de Células Germinales y Embrionarias/genética , Apoptosis , Progresión de la Enfermedad , Evolución Molecular , Exoma/genética , Genómica , Humanos , Pérdida de Heterocigocidad , Masculino , Mitocondrias/metabolismo , Mutación , Proteína Homeótica Nanog/deficiencia , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neoplasias de Células Germinales y Embrionarias/metabolismo , Neoplasias de Células Germinales y Embrionarias/patología , Factor 3 de Transcripción de Unión a Octámeros/deficiencia , Filogenia , Proteínas Proto-Oncogénicas p21(ras)/genética , Teratoma/genética , Neoplasias Testiculares/tratamiento farmacológico , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patología , Transcriptoma/genética , Proteína p53 Supresora de Tumor/genética
4.
Medicina (Kaunas) ; 58(10)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36295630

RESUMEN

Background and Objectives: Sickle cell anemia (SCA) is a hereditary monogenic disease due to a single ß-globin gene mutation that codes for the production of sickle hemoglobin. Its phenotype is modulated by fetal hemoglobin (HbF), a product of γ-globin genes. Exploring the molecules that regulate γ-globin genes at both transcriptional and translational levels, including microRNA (miRNA), might help identify alternative therapeutic targets. Materials and Methods: Using next-generation sequencing we identified pre-miRNAs and mature miRNA expression signatures associated with different HbF levels in patients homozygous for the sickle hemoglobin gene. The involvement of identified miRNAs in potential SCD-related pathways was investigated with the DIANA TOOL and miRWalk 2.0 database. Results: miR-184 were most highly upregulated in reticulocytes. miR-3609 and miR-483-5p were most highly downregulated in sickle cell anemia with high HbF. miR-370-3p that regulates LIN28A, and miR-451a which is effective in modulating α- and ß- globin levels were also significantly upregulated. miRNA targeted gene pathway interaction identified BCL7A, BCL2L1, LIN28A, KLF6, GATA6, solute carrier family genes and ZNF genes associated with erythropoiesis, cell cycle regulation, glycosphingolipid biosynthesis, cAMP, cGMP-PKG, mTOR, MAPK and PI3K-AKT signaling pathways and cancer pathways. Conclusions: miRNA signatures and their target genes identified novel miRNAs that could regulate fetal hemoglobin production and might be exploited therapeutically.


Asunto(s)
Anemia de Células Falciformes , MicroARNs , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gamma-Globinas/genética , gamma-Globinas/uso terapéutico , Hemoglobina Falciforme/uso terapéutico , Arabia Saudita , Fosfatidilinositol 3-Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Anemia de Células Falciformes/genética , MicroARNs/genética , MicroARNs/uso terapéutico , Globinas beta/genética , Globinas beta/uso terapéutico , Serina-Treonina Quinasas TOR/uso terapéutico , Glicoesfingolípidos/uso terapéutico
5.
Am J Hum Genet ; 102(3): 401-414, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29478780

RESUMEN

Colorectal cancer (CRC) heritability has been estimated to be around 30%. However, mutations in the known CRC-susceptibility genes explain CRC risk in fewer than 10% of affected individuals. Germline mutations in DNA-repair genes (DRGs) have recently been reported in CRC, but their contribution to CRC risk is largely unknown. We evaluated the gene-level germline mutation enrichment of 40 DRGs in 680 unselected CRC individuals and 27,728 ancestry-matched cancer-free adults. Significant findings were then examined in independent cohorts of 1,661 unselected CRC individuals and 1,456 individuals with early-onset CRC. Of the 680 individuals in the discovery set, 31 (4.56%) individuals harbored germline pathogenic mutations in known CRC-susceptibility genes, and another 33 (4.85%) individuals had DRG mutations that have not been previously associated with CRC risk. Germline pathogenic mutations in ATM and PALB2 were enriched in both the discovery (OR = 2.81 and p = 0.035 for ATM and OR = 4.91 and p = 0.024 for PALB2) and validation (OR = 2.97 and adjusted p = 0.0013 for ATM and OR = 3.42 and adjusted p = 0.034 for PALB2) sets. Biallelic loss of ATM was evident in all individuals with matched tumor profiling. CRC individuals also had higher rates of actionable mutations in the HR pathway, which can substantially increase the risk of developing cancers other than CRC. Our analysis provides evidence for ATM and PALB2 as CRC-risk genes, underscoring the importance of the homologous recombination pathway in CRC. In addition, we identified frequent complete homologous recombination deficiency in CRC tumors, representing a unique opportunity to explore targeted therapeutic interventions such as poly-ADP ribose polymerase inhibitor (PARPi).


Asunto(s)
Neoplasias Colorrectales/genética , Reparación del ADN/genética , Patrón de Herencia/genética , Adulto , Anciano , Estudios de Cohortes , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
6.
Genet Med ; 23(5): 918-926, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33531667

RESUMEN

PURPOSE: Cohort-based germline variant characterization is the standard approach for pathogenic variant discovery in clinical and research samples. However, the impact of cohort size on the molecular diagnostic yield of joint genotyping is largely unknown. METHODS: Head-to-head comparison of the molecular diagnostic yield of joint genotyping in two cohorts of 239 cancer patients in the absence and then in the presence of 100 additional germline exomes. RESULTS: In 239 testicular cancer patients, 4 (7.4%, 95% confidence interval [CI]: 2.1-17.9) of 54 pathogenic variants in the cancer predisposition and American College of Medical Genetics and Genomics (ACMG) genes were missed by one or both computational runs of joint genotyping. Similarly, 8 (12.1%, 95% CI: 5.4-22.5) of 66 pathogenic variants in these genes were undetected by joint genotyping in another independent cohort of 239 breast cancer patients. An exome-wide analysis of putative loss-of-function (pLOF) variants in the testicular cancer cohort showed that 162 (8.2%, 95% CI: 7.1-9.6) pLOF variants were only detected in one analysis run but not the other, while 433 (22.0%, 95% CI: 20.2-23.9%) pLOF variants were filtered out by both analyses despite having sufficient sequencing coverage. CONCLUSION: Our analysis of the standard germline variant detection method highlighted a substantial impact of concurrently analyzing additional genomic data sets on the ability to detect clinically relevant germline pathogenic variants.


Asunto(s)
Neoplasias Testiculares , Predisposición Genética a la Enfermedad , Genómica , Genotipo , Células Germinativas , Humanos , Masculino , Patología Molecular
7.
Genet Med ; 22(4): 709-718, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31844177

RESUMEN

PURPOSE: To date, there has not been a large, systematic evaluation of the prevalence of germline risk variants in urothelial carcinoma (UC). METHODS: We evaluated the frequency of germline pathogenic and likely pathogenic variants in 1038 patients with high-risk UC who underwent targeted clinical germline testing. Case-control enrichment analysis was performed to screen for pathogenic variant enrichment in 17 DNA repair genes in 1038 UC patients relative to cancer-free individuals. RESULTS: Among 1038 patients with UC, the cumulative frequency of patients with pathogenic variants was 24%; 18.6% of patients harbored ≥1 actionable germline variant with preventive or therapeutic utility. MSH2 (34/969, 3.5%) and BRCA1/2 (38/867, 4.4%) germline variants had the highest frequency. Germline variants in DNA damage repair genes accounted for 78% of pathogenic germline variants. Compared to the cancer-free cohort, UC patients had significant variant enrichment in MSH2 (odds ratio [OR]: 15.4, 95% confidence interval [CI]: 7.1-32.7, p < 0.0001), MLH1 (OR: 15.9, 95% CI: 4.4-67.7, p < 0.0001), BRCA2 (OR: 5.7, 95% CI: 3.2-9.6, p < 0.0001), and ATM (OR: 3.8, 95% CI: 1.8-8.3, p = 0.02). CONCLUSION: In this study, 24% of UC patients harbored pathogenic germline variants and 18.6% had clinically actionable variants. MLH1 and MSH2 were validated as UC risk genes while ATM and BRCA2 were highlighted as potential UC predisposition genes. This work emphasizes the utility of germline testing in selected high-risk UC cohorts.


Asunto(s)
Carcinoma , Mutación de Línea Germinal , Predisposición Genética a la Enfermedad , Células Germinativas , Humanos , Prevalencia
8.
JAMA ; 324(19): 1957-1969, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33201204

RESUMEN

Importance: Less than 10% of patients with cancer have detectable pathogenic germline alterations, which may be partially due to incomplete pathogenic variant detection. Objective: To evaluate if deep learning approaches identify more germline pathogenic variants in patients with cancer. Design, Setting, and Participants: A cross-sectional study of a standard germline detection method and a deep learning method in 2 convenience cohorts with prostate cancer and melanoma enrolled in the US and Europe between 2010 and 2017. The final date of clinical data collection was December 2017. Exposures: Germline variant detection using standard or deep learning methods. Main Outcomes and Measures: The primary outcomes included pathogenic variant detection performance in 118 cancer-predisposition genes estimated as sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The secondary outcomes were pathogenic variant detection performance in 59 genes deemed actionable by the American College of Medical Genetics and Genomics (ACMG) and 5197 clinically relevant mendelian genes. True sensitivity and true specificity could not be calculated due to lack of a criterion reference standard, but were estimated as the proportion of true-positive variants and true-negative variants, respectively, identified by each method in a reference variant set that consisted of all variants judged to be valid from either approach. Results: The prostate cancer cohort included 1072 men (mean [SD] age at diagnosis, 63.7 [7.9] years; 857 [79.9%] with European ancestry) and the melanoma cohort included 1295 patients (mean [SD] age at diagnosis, 59.8 [15.6] years; 488 [37.7%] women; 1060 [81.9%] with European ancestry). The deep learning method identified more patients with pathogenic variants in cancer-predisposition genes than the standard method (prostate cancer: 198 vs 182; melanoma: 93 vs 74); sensitivity (prostate cancer: 94.7% vs 87.1% [difference, 7.6%; 95% CI, 2.2% to 13.1%]; melanoma: 74.4% vs 59.2% [difference, 15.2%; 95% CI, 3.7% to 26.7%]), specificity (prostate cancer: 64.0% vs 36.0% [difference, 28.0%; 95% CI, 1.4% to 54.6%]; melanoma: 63.4% vs 36.6% [difference, 26.8%; 95% CI, 17.6% to 35.9%]), PPV (prostate cancer: 95.7% vs 91.9% [difference, 3.8%; 95% CI, -1.0% to 8.4%]; melanoma: 54.4% vs 35.4% [difference, 19.0%; 95% CI, 9.1% to 28.9%]), and NPV (prostate cancer: 59.3% vs 25.0% [difference, 34.3%; 95% CI, 10.9% to 57.6%]; melanoma: 80.8% vs 60.5% [difference, 20.3%; 95% CI, 10.0% to 30.7%]). For the ACMG genes, the sensitivity of the 2 methods was not significantly different in the prostate cancer cohort (94.9% vs 90.6% [difference, 4.3%; 95% CI, -2.3% to 10.9%]), but the deep learning method had a higher sensitivity in the melanoma cohort (71.6% vs 53.7% [difference, 17.9%; 95% CI, 1.82% to 34.0%]). The deep learning method had higher sensitivity in the mendelian genes (prostate cancer: 99.7% vs 95.1% [difference, 4.6%; 95% CI, 3.0% to 6.3%]; melanoma: 91.7% vs 86.2% [difference, 5.5%; 95% CI, 2.2% to 8.8%]). Conclusions and Relevance: Among a convenience sample of 2 independent cohorts of patients with prostate cancer and melanoma, germline genetic testing using deep learning, compared with the current standard genetic testing method, was associated with higher sensitivity and specificity for detection of pathogenic variants. Further research is needed to understand the relevance of these findings with regard to clinical outcomes.


Asunto(s)
Análisis Mutacional de ADN/métodos , Aprendizaje Profundo , Pruebas Genéticas/métodos , Mutación de Línea Germinal , Melanoma/genética , Neoplasias de la Próstata/genética , Estudios Transversales , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad
9.
N Engl J Med ; 375(5): 443-53, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27433846

RESUMEN

BACKGROUND: Inherited mutations in DNA-repair genes such as BRCA2 are associated with increased risks of lethal prostate cancer. Although the prevalence of germline mutations in DNA-repair genes among men with localized prostate cancer who are unselected for family predisposition is insufficient to warrant routine testing, the frequency of such mutations in patients with metastatic prostate cancer has not been established. METHODS: We recruited 692 men with documented metastatic prostate cancer who were unselected for family history of cancer or age at diagnosis. We isolated germline DNA and used multiplex sequencing assays to assess mutations in 20 DNA-repair genes associated with autosomal dominant cancer-predisposition syndromes. RESULTS: A total of 84 germline DNA-repair gene mutations that were presumed to be deleterious were identified in 82 men (11.8%); mutations were found in 16 genes, including BRCA2 (37 men [5.3%]), ATM (11 [1.6%]), CHEK2 (10 [1.9% of 534 men with data]), BRCA1 (6 [0.9%]), RAD51D (3 [0.4%]), and PALB2 (3 [0.4%]). Mutation frequencies did not differ according to whether a family history of prostate cancer was present or according to age at diagnosis. Overall, the frequency of germline mutations in DNA-repair genes among men with metastatic prostate cancer significantly exceeded the prevalence of 4.6% among 499 men with localized prostate cancer (P<0.001), including men with high-risk disease, and the prevalence of 2.7% in the Exome Aggregation Consortium, which includes 53,105 persons without a known cancer diagnosis (P<0.001). CONCLUSIONS: In our multicenter study, the incidence of germline mutations in genes mediating DNA-repair processes among men with metastatic prostate cancer was 11.8%, which was significantly higher than the incidence among men with localized prostate cancer. The frequencies of germline mutations in DNA-repair genes among men with metastatic disease did not differ significantly according to age at diagnosis or family history of prostate cancer. (Funded by Stand Up To Cancer and others.).


Asunto(s)
Reparación del ADN/genética , Mutación de Línea Germinal , Neoplasias de la Próstata/genética , Factores de Edad , Anciano , Anciano de 80 o más Años , Análisis Mutacional de ADN , Predisposición Genética a la Enfermedad , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia/genética
10.
Clin Genet ; 95(2): 310-319, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30561787

RESUMEN

Defects in the peroxisomes biogenesis and/or function result in peroxisomal disorders. In this study, we describe the largest Arab cohort to date (72 families) of clinically, biochemically and molecularly characterized patients with peroxisomal disorders. At the molecular level, we identified 43 disease-causing variants, half of which are novel. The founder nature of many of the variants allowed us to calculate the minimum disease burden for these disorders in our population ~1:30 000, which is much higher than previous estimates in other populations. Clinically, we found an interesting trend toward genotype/phenotype correlation in terms of long-term survival. Nearly half (40/75) of our peroxisomal disorders patients had documented survival beyond 1 year of age. Most unusual among the long-term survivors was a multiplex family in which the affected members presented as adults with non-specific intellectual disability and epilepsy. Other unusual presentations included the very recently described peroxisomal fatty acyl-CoA reductase 1 disorder as well as CRD, spastic paraparesis, white matter (CRSPW) syndrome. We conclude that peroxisomal disorders are highly heterogeneous in their clinical presentation. Our data also confirm the demonstration that milder forms of Zellweger spectrum disorders cannot be ruled out by the "gold standard" very long chain fatty acids assay, which highlights the value of a genomics-first approach in these cases.


Asunto(s)
Árabes , Trastorno Peroxisomal/epidemiología , Trastorno Peroxisomal/etiología , Árabes/genética , Biomarcadores , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Estudios de Cohortes , Consanguinidad , Costo de Enfermedad , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Imagen por Resonancia Magnética , Masculino , Mutación , Linaje , Trastorno Peroxisomal/diagnóstico , Trastorno Peroxisomal/terapia , Fenotipo , Vigilancia de la Población , Pronóstico
11.
Can J Urol ; 26(5 Suppl 2): 14-16, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31629418

RESUMEN

Germline genetic testing has become an increasingly informative tool in the management of cancer patients. Over the past few years, the landscape of germline testing of prostate cancer patients has evolved significantly with the introduction of several multi-gene panel tests. Here, we dissect the clinically available prostate cancer-specific multi-gene panels and explore their performance on clinical series of prostate cancer patients from different ethnic groups.


Asunto(s)
Pruebas Genéticas/métodos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Mutación de Línea Germinal , Humanos , Masculino , Familia de Multigenes/genética
12.
Pediatr Emerg Care ; 34(1): 64-67, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29095391

RESUMEN

Inborn errors of metabolism (IEMs) are genetic disorders that disrupt enzyme activity, cellular transport, or energy production. They are individually rare but collectively have an incidence of 1:1000. Most patients with IEMs are followed up by a physician with expertise in biochemical genetics (metabolism), but may present outside this setting. Because IEMs can present acutely with life-threatening crises that require specific interventions, it is critical for the emergency medicine physician, pediatrician, internist, and critical care physician as well as the biochemical geneticist to have information on the initial assessment and management of patients with these disorders. Appropriate early care can be lifesaving. This protocol is not designed to replace the expert consultation of a biochemical geneticist, but rather to improve early care and increase the level of comfort of the acute care physician with initial management of maple syrup urine disease until specialty consultation is obtained.


Asunto(s)
Enfermedad Aguda/terapia , Enfermedad de la Orina de Jarabe de Arce/terapia , Algoritmos , Medicina de Emergencia/métodos , Humanos , Enfermedad de la Orina de Jarabe de Arce/complicaciones , Monitoreo Fisiológico/métodos
13.
Pediatr Emerg Care ; 34(6): e115-e119, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29135898

RESUMEN

Inborn errors of metabolism (IEMs) are genetic disorders that disrupt enzyme activity, cellular transport, or energy production. They are individually rare but collectively have an incidence of 1:1000. Most patients with IEMs are followed up by a physician with expertise in biochemical genetics (metabolism), but may present outside this setting. Because IEMs can present acutely with life-threatening crises that require specific interventions, it is critical for the emergency physician, internist, and critical care physician as well as the biochemical geneticist to have information on the initial assessment and management of patients with these disorders. Appropriate early care can be lifesaving. This protocol is not designed to replace the expert consultation of a biochemical geneticist, but rather to improve early care and increase the level of comfort of the acute care physician with initial management of urea cycle disorders until specialty consultation is obtained.


Asunto(s)
Cuidados Críticos/métodos , Trastornos Innatos del Ciclo de la Urea/terapia , Enfermedad Aguda/terapia , Manejo de la Enfermedad , Humanos , Médicos , Guías de Práctica Clínica como Asunto , Derivación y Consulta
14.
Pediatr Emerg Care ; 33(2): 142-146, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28141776

RESUMEN

Inborn errors of metabolism (IEM) are genetic disorders that disrupt enzyme activity, cellular transport, or energy production. They are individually rare, but collectively have an incidence of 1:1000. Most patients with IEMs are followed by a physician with expertise in Biochemical Genetics (Metabolism), but may present outside of this setting. Because IEMs can present acutely with life-threatening crises that require specific interventions, it is critical for the emergency medicine physicians, pediatricians, internists, and critical care physicians as well as biochemical geneticists to be familiar with the initial assessment and management of patients with these disorders. Appropriate early care can be lifesaving. This protocol is not designed to replace the expert consultation of a biochemical geneticist but rather to improve early care and increase the level of comfort of the acute care physician with initial management of organic acidemias until specialty consultation is obtained.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/terapia , Acidemia Propiónica/terapia , Enfermedad Aguda , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Manejo de la Enfermedad , Humanos , Acidemia Propiónica/diagnóstico
15.
Pediatr Emerg Care ; 33(4): 296-301, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28353532

RESUMEN

Inborn errors of metabolism (IEMs) are genetic disorders that disrupt enzyme activity, cellular transport, or energy production. They are individually rare but collectively have an incidence of 1:1000. Most patients with IEMs are followed by a physician with expertise in biochemical genetics (metabolism) but may present outside this setting. Because IEMs can present acutely with life-threatening crises that require specific interventions, it is critical for the emergency medicine physicians, pediatricians, internists, critical care physicians, and biochemical geneticists to be familiar with the initial assessment and management of patients with these disorders. Appropriate early care can be lifesaving. This protocol is not designed to replace the expert consultation of a biochemical geneticist but rather to improve early care and increase the level of comfort of the acute care physician with initial management of fatty acid oxidation and carnitine disorders until specialty consultation is obtained.


Asunto(s)
Carnitina/deficiencia , Ácidos Grasos/metabolismo , Errores Innatos del Metabolismo/epidemiología , Manejo de la Enfermedad , Diagnóstico Precoz , Medicina de Emergencia , Humanos , Oxidación-Reducción
16.
Cancer ; 122(11): 1672-9, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27019099

RESUMEN

BACKGROUND: In November 2001, genetic testing for Lynch syndrome (LS) was introduced by the Ministry of Health and Long-Term Care (MOH) in Ontario for individuals at high risk for LS cancers according to either tumor immunohistochemistry staining or their family history. This article describes the outcomes of the program and makes recommendations for improving it and informing other public health care programs. METHODS: Subjects were referred for molecular testing of the mismatch repair (MMR) genes MutL homolog 1, MutS homolog 2, and MutS homolog 6 if they met 1 of 7 MOH criteria. Testing was conducted from January 2001 to March 2015 at the Molecular Diagnostic Laboratory of Mount Sinai Hospital in Toronto. RESULTS: A total of 1452 subjects were tested. Of the 662 subjects referred for testing because their tumor was immunodeficient for 1 or more of the MMR genes, 251 (37.9%) carried a germline mutation. In addition, 597 subjects were tested for a known family mutation, and 298 (49.9%) were positive; 189 of these 298 subjects (63.4%) were affected with cancer at the time of testing. An additional 193 subjects were referred because of a family history of LS, and 34 of these (17.6%) had a mutation identified. CONCLUSIONS: These results indicate that the provincial criteria are useful in identifying LS carriers after an MMR-deficient tumor is identified. Placing greater emphasis on testing unaffected relatives in families with a known mutation may identify more unaffected carriers and facilitate primary prevention in those individuals. Cancer 2016;122:1672-9. © 2016 American Cancer Society.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN , Pruebas Genéticas/métodos , Mutación de Línea Germinal , Adolescente , Adulto , Anciano , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Proteínas de Unión al ADN/genética , Salud de la Familia , Femenino , Heterocigoto , Humanos , Masculino , Inestabilidad de Microsatélites , Persona de Mediana Edad , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Ontario , Evaluación de Programas y Proyectos de Salud , Adulto Joven
17.
Mol Genet Metab ; 112(2): 171-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24793577

RESUMEN

INTRODUCTION: In this study, patients suspected of having a clinical diagnosis of Marfan Syndrome (MFS), Loeys-Dietz Syndrome (LDS) and Thoracic Aortic Aneurysms and Dissections (TAAD) were referred for genetic testing and examined for mutations in the FBN1, TGFßR1, TGFßR2 and ACTA2 genes. METHODS: We examined 594 samples from unrelated individuals and different combinations of genes were sequenced, including one or more of the following: FBN1, TGFßR1, TGFßR2, ACTA2, and, in some cases, FBN1 was analyzed by MLPA to detect large deletions. RESULTS: A total of 112 patients had a positive result. Of those, 61 had a clinical diagnosis of MFS, eight had LDS, three had TAAD and 40 patients had clinical features with no specific diagnosis provided. A total of 44 patients had an inconclusive result; of these, 12 patients were referred with a clinical diagnosis of MFS, 4 with LDS and 9 with TAAD and 19 had no clinical diagnosis. A total of 89 mutations were novel. CONCLUSION: This study reveals the rate of detection of variants in several genes associated with MFS, LDS and TAAD. The evaluation of patients by individuals with expertise in the field may decrease the likelihood of ordering unnecessary molecular testing. Nevertheless, genetic testing supports the diagnosis of MFS, LDS and TAAD.


Asunto(s)
Actinas/genética , Aneurisma de la Aorta/diagnóstico , Variación Genética , Síndrome de Marfan/diagnóstico , Proteínas de Microfilamentos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Adolescente , Adulto , Anciano , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/patología , Niño , Preescolar , Femenino , Fibrilina-1 , Fibrilinas , Pruebas Genéticas , Humanos , Lactante , Recién Nacido , Masculino , Síndrome de Marfan/genética , Persona de Mediana Edad , Mutación , Análisis de Secuencia de ADN , Adulto Joven
18.
J Invest Dermatol ; 144(7): 1534-1543.e2, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38272206

RESUMEN

Recessive dystrophic epidermolysis bullosa (RDEB) is a severely debilitating disorder caused by pathogenic variants in COL7A1 and is characterized by extreme skin fragility, chronic inflammation, and fibrosis. A majority of patients with RDEB develop squamous cell carcinoma, a highly aggressive skin cancer with limited treatment options currently available. In this study, we utilized an approach leveraging whole-genome sequencing and RNA sequencing across 3 different tissues in a single patient with RDEB to gain insight into possible mechanisms of RDEB-associated squamous cell carcinoma progression and to identify potential therapeutic options. As a result, we identified PLK-1 as a possible candidate for targeted therapy and discovered microsatellite instability and accelerated aging as factors potentially contributing to the aggressive nature and early onset of RDEB squamous cell carcinoma. By integrating multitissue genomic and transcriptomic analyses in a single patient, we demonstrate the promise of bridging the gap between genomic research and clinical applications for developing tailored therapies for patients with rare genetic disorders such as RDEB.


Asunto(s)
Carcinoma de Células Escamosas , Colágeno Tipo VII , Epidermólisis Ampollosa Distrófica , Inestabilidad de Microsatélites , Neoplasias Cutáneas , Humanos , Envejecimiento/genética , Envejecimiento/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/patología , Piel/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Secuenciación Completa del Genoma
19.
Eur Urol Open Sci ; 62: 107-122, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38496821

RESUMEN

Background and objective: Previous germline studies on renal cell carcinoma (RCC) have usually pooled clear and non-clear cell RCCs and have not adequately accounted for population stratification, which might have led to an inaccurate estimation of genetic risk. Here, we aim to analyze the major germline drivers of RCC risk and clinically relevant but underexplored germline variant types. Methods: We first characterized germline pathogenic variants (PVs), cryptic splice variants, and copy number variants (CNVs) in 1436 unselected RCC patients. To evaluate the enrichment of PVs in RCC, we conducted a case-control study of 1356 RCC patients ancestry matched with 16 512 cancer-free controls using approaches accounting for population stratification and histological subtypes, followed by characterization of secondary somatic events. Key findings and limitations: Clear cell RCC patients (n = 976) exhibited a significant burden of PVs in VHL compared with controls (odds ratio [OR]: 39.1, p = 4.95e-05). Non-clear cell RCC patients (n = 380) carried enrichment of PVs in FH (OR: 77.9, p = 1.55e-08) and MET (OR: 1.98e11, p = 2.07e-05). In a CHEK2-focused analysis with European participants, clear cell RCC (n = 906) harbored nominal enrichment of low-penetrance CHEK2 variants-p.Ile157Thr (OR: 1.84, p = 0.049) and p.Ser428Phe (OR: 5.20, p = 0.045), while non-clear cell RCC (n = 295) exhibited nominal enrichment of CHEK2 loss of function PVs (OR: 3.51, p = 0.033). Patients with germline PVs in FH, MET, and VHL exhibited significantly earlier age of cancer onset than patients without germline PVs (mean: 46.0 vs 60.2 yr, p < 0.0001), and more than half had secondary somatic events affecting the same gene (n = 10/15, 66.7%). Conversely, CHEK2 PV carriers exhibited a similar age of onset to patients without germline PVs (mean: 60.1 vs 60.2 yr, p = 0.99), and only 30.4% carried somatic events in CHEK2 (n = 7/23). Finally, pathogenic germline cryptic splice variants were identified in SDHA and TSC1, and pathogenic germline CNVs were found in 18 patients, including CNVs in FH, SDHA, and VHL. Conclusions and clinical implications: This analysis supports the existing link between several RCC risk genes and RCC risk manifesting in earlier age of onset. It calls for caution when assessing the role of CHEK2 due to the burden of founder variants with varying population frequency. It also broadens the definition of the RCC germline landscape of pathogenicity to incorporate previously understudied types of germline variants. Patient summary: In this study, we carefully compared the frequency of rare inherited mutations with a focus on patients' genetic ancestry. We discovered that subtle variations in genetic background may confound a case-control analysis, especially in evaluating the cancer risk associated with specific genes, such as CHEK2. We also identified previously less explored forms of rare inherited mutations, which could potentially increase the risk of kidney cancer.

20.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746320

RESUMEN

Pediatric solid tumors are rare malignancies that represent a leading cause of death by disease among children in developed countries. The early age-of-onset of these tumors suggests that germline genetic factors are involved, yet conventional germline testing for short coding variants in established predisposition genes only identifies pathogenic events in 10-15% of patients. Here, we examined the role of germline structural variants (SVs)-an underexplored form of germline variation-in pediatric extracranial solid tumors using germline genome sequencing of 1,766 affected children, their 943 unaffected relatives, and 6,665 adult controls. We discovered a sex-biased association between very large (>1 megabase) germline chromosomal abnormalities and a four-fold increased risk of solid tumors in male children. The overall impact of germline SVs was greatest in neuroblastoma, where we revealed burdens of ultra-rare SVs that cause loss-of-function of highly expressed, mutationally intolerant, neurodevelopmental genes, as well as noncoding SVs predicted to disrupt three-dimensional chromatin domains in neural crest-derived tissues. Collectively, our results implicate rare germline SVs as a predisposing factor to pediatric solid tumors that may guide future studies and clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA