Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dairy Sci ; 105(6): 4843-4856, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35379457

RESUMEN

Camel milk (CM) can be used as an ingredient to produce various dairy products but it forms weak rennet-induced and acid-induced gels compared with bovine milk (BM). Therefore, in this study, we aimed to investigate the effect of blending bovine milk with camel milk on the physicochemical, rheological (amplitude sweep and frequency sweep), and microstructural properties of low-fat akawi (LFA) cheese. The cheeses were made of BM only or BM blended with 15% (CM15%) or 30% (CM30%) camel milk and stored at 4°C for 28 d. The viscoelastic properties as a function of temperature were assessed. The LFA cheeses made from blended milks had higher moisture, total Ca, and soluble Ca contents, and had higher pH 4.6-water-soluble nitrogen compared with those made from BM. Analysis by scanning electron microscopy demonstrated that the microstructures formed in BM cheese were rough with granular surfaces, whereas those in blended milk cheeses had smooth surfaces. Hardness was lower for LFA cheeses made from blended milk than for those made from BM only. The LFA cheeses demonstrated viscoelastic behavior in a linear viscoelastic range from 0.1 to 1.0% strain. The storage modulus (G') was lower in LFA cheese made from BM over a range of frequencies. Adding CM reduced the resistance of LFA cheeses to flow as temperature increased. Blended cheeses exhibited lower complex viscosity values than BM cheeses during temperature increases. Thus, the addition of camel milk improved the rheological properties of LFA cheese.


Asunto(s)
Queso , Animales , Camelus , Queso/análisis , Manipulación de Alimentos , Leche/química , Reología , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA