Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(36): 17943-17950, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31399546

RESUMEN

Previous studies have shown that heat shock stress may activate transposable elements (TEs) in Drosophila and other organisms. Such an effect depends on the disruption of a chaperone complex that is normally involved in biogenesis of Piwi-interacting RNAs (piRNAs), the largest class of germline-enriched small noncoding RNAs implicated in the epigenetic silencing of TEs. However, a satisfying picture of how chaperones could be involved in repressing TEs in germ cells is still unknown. Here we show that, in Drosophila, heat shock stress increases the expression of TEs at a posttranscriptional level by affecting piRNA biogenesis through the action of the inducible chaperone Hsp70. We found that stress-induced TE activation is triggered by an interaction of Hsp70 with the Hsc70-Hsp90 complex and other factors all involved in piRNA biogenesis in both ovaries and testes. Such interaction induces a displacement of all such factors to the lysosomes, resulting in a functional collapse of piRNA biogenesis. This mechanism has clear evolutionary implications. In the presence of drastic environmental changes, Hsp70 plays a key dual role in increasing both the survival probability of individuals and the genetic variability in their germ cells. The consequent increase of genetic variation in a population potentiates evolutionary plasticity and evolvability.


Asunto(s)
Elementos Transponibles de ADN , Proteínas HSP70 de Choque Térmico/metabolismo , Estrés Fisiológico , Activación Transcripcional , Evolución Molecular , Silenciador del Gen , Respuesta al Choque Térmico/genética , Modelos Biológicos , Unión Proteica , Interferencia de ARN
2.
PLoS One ; 9(1): e86002, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24489688

RESUMEN

BACKGROUND: Histone demethylases (HDMs) have a prominent role in epigenetic regulation and are emerging as potential therapeutic cancer targets. The search for small molecules able to inhibit HDMs in vivo is very active but at the present few compounds were found to be specific for defined classes of these enzymes. METHODOLOGY/PRINCIPAL FINDINGS: In order to discover inhibitors specific for H3K4 histone demethylation we set up a screening system which tests the effects of candidate small molecule inhibitors on a S.cerevisiae strain which requires Jhd2 demethylase activity to efficiently grow in the presence of rapamycin. In order to validate the system we screened a library of 45 structurally different compounds designed as competitive inhibitors of α -ketoglutarate (α-KG) cofactor of the enzyme, and found that one of them inhibited Jhd2 activity in vitro and in vivo. The same compound effectively inhibits human Jumonji AT-Rich Interactive Domain (JARID) 1B and 1D in vitro and increases H3K4 tri-methylation in HeLa cell nuclear extracts (NEs). When added in vivo to HeLa cells, the compound leads to an increase of tri-methyl-H3K4 (H3K4me3) but does not affect H3K9 tri-methylation. We describe the cytostatic and toxic effects of the compound on HeLa cells at concentrations compatible with its inhibitory activity. CONCLUSIONS/SIGNIFICANCE: Our screening system is proved to be very useful in testing putative H3K4-specific HDM inhibitors for the capacity of acting in vivo without significantly altering the activity of other important 2-oxoglutarate oxygenases.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Histonas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Coenzimas/metabolismo , Células HeLa , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metilación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Bibliotecas de Moléculas Pequeñas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA