RESUMEN
T cell receptors (TCRs) are protein complexes formed by six different polypeptides. In most T cells, TCRs are composed of αß subunits displaying immunoglobulin-like variable domains that recognize peptide antigens associated with major histocompatibility complex molecules expressed on the surface of antigen-presenting cells. TCRαß subunits are associated with the CD3 complex formed by the γ, δ, ε, and ζ subunits, which are invariable and ensure signal transduction. Here, we review how the expression and function of TCR complexes are orchestrated by several fine-tuned cellular processes that encompass (a) synthesis of the subunits and their correct assembly and expression at the plasma membrane as a single functional complex, (b) TCR membrane localization and dynamics at the plasma membrane and in endosomal compartments, (c) TCR signal transduction leading to T cell activation, and (d) TCR degradation. These processes balance each other to ensure efficient T cell responses to a variety of antigenic stimuli while preventing autoimmunity.
Asunto(s)
Regulación de la Expresión Génica , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Biomarcadores , Complejo CD3/genética , Complejo CD3/metabolismo , Membrana Celular/metabolismo , Endocitosis/genética , Endocitosis/inmunología , Endosomas/metabolismo , Humanos , Inmunomodulación , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteolisis , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Relación Estructura-ActividadRESUMEN
Signaling through the T cell receptor (TCR) controls adaptive immune responses. Antigen binding to TCRαß transmits signals through the plasma membrane to induce phosphorylation of the CD3 cytoplasmic tails by incompletely understood mechanisms. Here we show that cholesterol bound to the TCRß transmembrane region keeps the TCR in a resting, inactive conformation that cannot be phosphorylated by active kinases. Only TCRs that spontaneously detached from cholesterol could switch to the active conformation (termed primed TCRs) and then be phosphorylated. Indeed, by modulating cholesterol binding genetically or enzymatically, we could switch the TCR between the resting and primed states. The active conformation was stabilized by binding to peptide-MHC, which thus controlled TCR signaling. These data are explained by a model of reciprocal allosteric regulation of TCR phosphorylation by cholesterol and ligand binding. Our results provide both a molecular mechanism and a conceptual framework for how lipid-receptor interactions regulate signal transduction.
Asunto(s)
Inmunidad Adaptativa , Colesterol/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Linfocitos T/inmunología , Regulación Alostérica , Antígenos/inmunología , Antígenos/metabolismo , Antígenos de Histocompatibilidad/metabolismo , Humanos , Células Jurkat , Activación de Linfocitos , Modelos Inmunológicos , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Transducción de SeñalRESUMEN
BACKGROUND: Breast cancer (BC) is the most common cancer in women, with triple negative BC (TNBC) accounting for 20% of cases. While early detection and targeted therapies have improved overall life expectancy, TNBC remains resistant to current treatments. Although parity reduces the lifetime risk of developing BC, pregnancy increases the risk of developing TNBC for years after childbirth. Although numerous gene mutations have been associated with BC, no single gene alteration has been identified as a universal driver. RRAS2 is a RAS-related GTPase rarely found mutated in cancer. METHODS: Conditional knock-in mice were generated to overexpress wild type human RRAS2 in mammary epithelial cells. A human sample cohort was analyzed by RT-qPCR to measure RRAS2 transcriptional expression and to determine the frequency of both a single-nucleotide polymorphism (SNP rs8570) in the 3'UTR region of RRAS2 and of genomic DNA amplification in tumoral and non-tumoral human BC samples. RESULTS: Here we show that overexpression of wild-type RRAS2 in mice is sufficient to develop TNBC in 100% of females in a pregnancy-dependent manner. In human BC, wild-type RRAS2 is overexpressed in 68% of tumors across grade, location, and molecular type, surpassing the prevalence of any previously implicated alteration. Still, RRAS2 overexpression is notably higher and more frequent in TNBC and young parous patients. The increased prevalence of the alternate C allele at the SNP position in tumor samples, along with frequent RRAS2 gene amplification in both tumors and blood of BC patients, suggests a cause-and-effect relationship between RRAS2 overexpression and breast cancer. CONCLUSIONS: Higher than normal expression of RRAS2 not bearing activating mutations is a key driver in the majority of breast cancers, especially those of the triple-negative type and those linked to pregnancy.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Femenino , Animales , Humanos , Ratones , Embarazo , Oncogenes , Polimorfismo de Nucleótido Simple , Periodo Posparto/genética , Mutación , Regulación Neoplásica de la Expresión Génica , Técnicas de Sustitución del Gen , Proteínas ras/genética , Proteínas ras/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Proteínas de la Membrana , Proteínas de Unión al GTP MonoméricasRESUMEN
CCR5 is not only a coreceptor for HIV-1 infection in CD4+ T cells, but also contributes to their functional fitness. Here, we show that by limiting transcription of specific ceramide synthases, CCR5 signaling reduces ceramide levels and thereby increases T-cell antigen receptor (TCR) nanoclustering in antigen-experienced mouse and human CD4+ T cells. This activity is CCR5-specific and independent of CCR5 co-stimulatory activity. CCR5-deficient mice showed reduced production of high-affinity class-switched antibodies, but only after antigen rechallenge, which implies an impaired memory CD4+ T-cell response. This study identifies a CCR5 function in the generation of CD4+ T-cell memory responses and establishes an antigen-independent mechanism that regulates TCR nanoclustering by altering specific lipid species.
Asunto(s)
Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Ceramidas/inmunología , Memoria Inmunológica , Receptores CCR5/deficiencia , Animales , Antígenos/genética , Linfocitos T CD4-Positivos/citología , Ceramidas/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Receptores CCR5/inmunologíaRESUMEN
The timing of the development of specific adaptive immunity after natural SARS-CoV-2 infection, and its relevance in clinical outcome, has not been characterized in depth. Description of the long-term maintenance of both cellular and humoral responses elicited by real-world anti-SARS-CoV-2 vaccination is still scarce. Here we aimed to understand the development of optimal protective responses after SARS-CoV-2 infection and vaccination. We performed an early, longitudinal study of S1-, M- and N-specific IFN-γ and IL-2 T cell immunity and anti-S total and neutralizing antibodies in 88 mild, moderate or severe acute COVID-19 patients. Moreover, SARS-CoV-2-specific adaptive immunity was also analysed in 234 COVID-19 recovered subjects, 28 uninfected BNT162b2-vaccinees and 30 uninfected healthy controls. Upon natural infection, cellular and humoral responses were early and coordinated in mild patients, while weak and inconsistent in severe patients. The S1-specific cellular response measured at hospital arrival was an independent predictive factor against severity. In COVID-19 recovered patients, four to seven months post-infection, cellular immunity was maintained but antibodies and neutralization capacity declined. Finally, a robust Th1-driven immune response was developed in uninfected BNT162b2-vaccinees. Three months post-vaccination, the cellular response was comparable, while the humoral response was consistently stronger, to that measured in COVID-19 recovered patients. Thus, measurement of both humoral and cellular responses provides information on prognosis and protection from infection, which may add value for individual and public health recommendations.
Asunto(s)
Anticuerpos Antivirales/sangre , Vacuna BNT162/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Vacunación , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Femenino , Humanos , Inmunoglobulina G/sangre , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunologíaRESUMEN
Neuroinflammation is a common feature of many neurodegenerative diseases. It fosters a dysfunctional neuron-microglia-astrocyte crosstalk that, in turn, maintains microglial cells in a perniciously reactive state that often enhances neuronal damage. The molecular components that mediate this critical communication are not fully explored. Here, we show that secreted frizzled-related protein 1 (SFRP1), a multifunctional regulator of cell-to-cell communication, is part of the cellular crosstalk underlying neuroinflammation. In mouse models of acute and chronic neuroinflammation, SFRP1, largely astrocyte-derived, promotes and sustains microglial activation, and thus a chronic inflammatory state. SFRP1 promotes the upregulation of components of the hypoxia-induced factor-dependent inflammatory pathway and, to a lower extent, of those downstream of the nuclear factor-kappa B. We thus propose that SFRP1 acts as an astrocyte-to-microglia amplifier of neuroinflammation, representing a potential valuable therapeutic target for counteracting the harmful effect of chronic inflammation in several neurodegenerative diseases.
Asunto(s)
Astrocitos , Microglía , Animales , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Microglía/metabolismo , Enfermedades NeuroinflamatoriasRESUMEN
The αß T-cell receptor (TCR) is a multiprotein complex controlling the activation of T cells. Although the structure of the complete TCR is not known, cumulative evidence supports that the TCR cycles between different conformational states that are promoted either by thermal motion or by force. These structural transitions determine whether the TCR engages intracellular effectors or not, regulating TCR phosphorylation and signaling. As for other membrane receptors, ligand binding selects and stabilizes the TCR in active conformations, and/or switches the TCR to activating states that were not visited before ligand engagement. Here we review the main models of TCR allostery, that is, ligand binding at TCRαß changes the structure at CD3 and ζ. (a) The ITAM and proline-rich sequence exposure model, in which the TCR's cytoplasmic tails shield each other and ligand binding exposes them for phosphorylation. (b) The membrane-ITAM model, in which the CD3ε and ζ tails are sequestered inside the membrane and again ligand binding exposes them. (c) The mechanosensor model in which ligand binding exerts force on the TCR, inducing structural changes that allow signaling. Since these models are complementary rather than competing, we propose a unified model that aims to incorporate all existing data.
Asunto(s)
Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Humanos , Ligandos , Activación de Linfocitos , Modelos Biológicos , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Relación Estructura-ActividadRESUMEN
BACKGROUND: Chronic lymphocytic leukemia (CLL) is the most frequent, and still incurable, form of leukemia in the Western World. It is widely accepted that cancer results from an evolutionary process shaped by the acquisition of driver mutations which confer selective growth advantage to cells that harbor them. Clear examples are missense mutations in classic RAS genes (KRAS, HRAS and NRAS) that underlie the development of approximately 13% of human cancers. Although autonomous B cell antigen receptor (BCR) signaling is involved and mutations in many tumor suppressor genes and oncogenes have been identified, an oncogenic driver gene has not still been identified for CLL. METHODS: Conditional knock-in mice were generated to overexpress wild type RRAS2 and prove its driver role. RT-qPCR analysis of a human CLL sample cohort was carried out to measure RRAS2 transcriptional expression. Sanger DNA sequencing was used to identify a SNP in the 3'UTR region of RRAS2 in human CLL samples. RNAseq of murine CLL was carried out to identify activated pathways, molecular mechanisms and to pinpoint somatic mutations accompanying RRAS2 overexpression. Flow cytometry was used for phenotypic characterization and shRNA techniques to knockdown RRAS2 expression in human CLL. RESULTS: RRAS2 mRNA is found overexpressed in its wild type form in 82% of the human CLL samples analyzed (n = 178, mean and median = 5-fold) as well as in the explored metadata. A single nucleotide polymorphism (rs8570) in the 3'UTR of the RRAS2 mRNA has been identified in CLL patients, linking higher expression of RRAS2 with more aggressive disease. Deliberate overexpression of wild type RRAS2 in mice, but not an oncogenic Q72L mutation in the coding sequence, provokes the development of CLL. Overexpression of wild type RRAS2 in mice is accompanied by a strong convergent selection of somatic mutations in genes that have been identified in human CLL. R-RAS2 protein is physically bound to the BCR and mediates BCR signals in CLL. CONCLUSIONS: The results indicate that overexpression of wild type RRAS2 is behind the development of CLL.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Proteínas de Unión al GTP Monoméricas , Animales , Genes ras , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Proteínas de la Membrana/genética , Ratones , Proteínas de Unión al GTP Monoméricas/genética , Mutación , Receptores de Antígenos de Linfocitos B , Transducción de SeñalRESUMEN
T cell antigen receptors (TCRs) and B cell antigen receptors (BCRs) transmit low-grade signals necessary for the survival and maintenance of mature cell pools. We show here that TC21, a small GTPase encoded by Rras2, interacted constitutively with both kinds of receptors. Expression of a dominant negative TC21 mutant in T cells produced a rapid decrease in cell viability, and Rras2(-/-) mice were lymphopenic, possibly as a result of diminished homeostatic proliferation and impaired T cell and B cell survival. In contrast, TC21 was overexpressed in several human lymphoid malignancies. Finally, the p110delta catalytic subunit of phosphatidylinositol-3-OH kinase (PI(3)K) was recruited to the TCR and BCR in a TC21-dependent way. Consequently, we propose TC21 directly links antigen receptors to PI(3)K-mediated survival pathways.
Asunto(s)
Linfocitos B/inmunología , Proteínas de la Membrana/fisiología , Proteínas de Unión al GTP Monoméricas/fisiología , Receptores de Antígenos de Linfocitos B/fisiología , Receptores de Antígenos de Linfocitos T/fisiología , Linfocitos T/inmunología , Animales , Supervivencia Celular , Homeostasis , Humanos , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Linfoma de Células B/inmunología , Linfoma de Células B/metabolismo , Linfoma de Células T/inmunología , Linfoma de Células T/metabolismo , Proteínas de la Membrana/inmunología , Ratones , Proteínas de Unión al GTP Monoméricas/inmunología , Fosfatidilinositol 3-Quinasas/fisiología , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de SeñalRESUMEN
The immunological synapse (IS) serves a dual role for sustained T cell receptor (TCR) signaling and for TCR downregulation. TC21 (Rras2) is a RRas subfamily GTPase that constitutively associates with the TCR and is implicated in tonic TCR signaling by activating phosphatidylinositol 3-kinase. In this study, we demonstrate that TC21 both cotranslocates with the TCR to the IS and is necessary for TCR internalization from the IS through a mechanism dependent on RhoG, a small GTPase previously associated with phagocytosis. Indeed, we found that the TCR triggers T cells to phagocytose 1-6 µm beads through a TC21- and RhoG-dependent pathway. We further show that TC21 and RhoG are necessary for the TCR-promoted uptake of major histocompatibility complex (MHC) from antigen-presenting cells. Therefore, TC21 and RhoG dependence underlie the existence of a common phagocytic mechanism that drives TCR internalization from the IS together with its peptide-MHC ligand.
Asunto(s)
Sinapsis Inmunológicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Fagocitosis , Receptores de Antígenos de Linfocitos T/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Presentación de Antígeno , Antígenos/metabolismo , Comunicación Celular , Antígenos de Histocompatibilidad Clase II , Humanos , Sinapsis Inmunológicas/patología , Células Jurkat , Proteínas de la Membrana/inmunología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Unión al GTP Monoméricas/inmunología , Fragmentos de Péptidos/inmunología , Fagocitosis/inmunología , Transporte de Proteínas , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Proteínas de Unión al GTP rho/inmunologíaRESUMEN
Although memory T cells respond more vigorously to stimulation and they are more sensitive to low doses of antigen than naive T cells, the molecular basis of this increased sensitivity remains unclear. We have previously shown that the T cell receptor (TCR) exists as different-sized oligomers on the surface of resting T cells and that large oligomers are preferentially activated in response to low antigen doses. Through biochemistry and electron microscopy, we now showed that previously stimulated and memory T cells have more and larger TCR oligomers at the cell surface than their naive counterparts. Reconstitution of cells and mice with a point mutant of the CD3ζ subunit, which impairs TCR oligomer formation, demonstrated that the increased size of TCR oligomers was directly responsible for the increased sensitivity of antigen-experienced T cells. Thus, we propose that an "avidity maturation" mechanism underlies T cell antigenic memory.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica , Oligodesoxirribonucleótidos , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Complejo CD3/genética , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Humanos , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Oligodesoxirribonucleótidos/genética , Oligodesoxirribonucleótidos/inmunología , Receptores de Antígenos de Linfocitos T/genéticaRESUMEN
Successful vaccines rely on activating a functional humoral response that results from promoting a proper germinal center (GC) reaction. Key in this process is the activation of follicular B cells that need to acquire antigens and to present them to cognate CD4 T cells. Here, we report that follicular B cells can phagocytose large antigen-coated particles, a process thought to be exclusive of specialized antigen-presenting cells such as macrophages and dendritic cells. We show that antigen phagocytosis by B cells is BCR-driven and mechanistically dependent on the GTPase RhoG. Using Rhog-/- mice, we show that phagocytosis of antigen by B cells is important for the development of a strong GC response and the generation of high-affinity class-switched antibodies. Importantly, we show that the potentiation effect of alum, a common vaccine adjuvant, requires direct phagocytosis of alum-antigen complexes by B cells. These data suggest a new avenue for vaccination approaches by aiming to deliver 1-3 µm size antigen particles to follicular B cells.
Asunto(s)
Antígenos/inmunología , Linfocitos B/inmunología , Inmunidad Humoral , Fagocitosis/inmunología , Actinas/metabolismo , Adyuvantes Inmunológicos , Compuestos de Alumbre/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , GTP Fosfohidrolasas/genética , Centro Germinal/citología , Centro Germinal/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Microesferas , Fagocitosis/genética , Vacunación/métodos , Proteínas de Unión al GTP rhoRESUMEN
The activity of the αß TCR is controlled by conformational switches. In the resting conformation, the TCR is not phosphorylated and is inactive. Binding of multivalent peptide-MHC to the TCR stabilizes the active conformation, leading to TCR signaling. These two conformations allow the TCRs to be allosterically regulated. We review recent data on heterotropic allostery where peptide-MHC and membrane cholesterol serve opposing functions as positive and negative allosteric regulators, respectively. In resting T cells cholesterol keeps TCRs in the resting conformation that otherwise would become spontaneously active. This regulation is well described by the classical Monod-Wyman-Changeux model of allostery. Moreover, the observation that TCRs assemble into nanoclusters might allow for homotropic allostery, in which individual TCRs could positively cooperate and thus enhance the sensitivity of T cell activation. This new view of TCR regulation will contribute to a better understanding of TCR functioning.
Asunto(s)
Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/inmunología , Regulación Alostérica , Animales , Humanos , Modelos Moleculares , Conformación Proteica , Transducción de Señal/inmunologíaRESUMEN
T-cell receptors (TCR) recognize their antigen ligand at the interface between T cells and antigen-presenting cells, known as the immunological synapse (IS). The IS provides a means of sustaining the TCR signal which requires the continual supply of new TCRs. These are endocytosed and redirected from distal membrane locations to the IS. In our search for novel cytoplasmic effectors, we have identified ß-arrestin-1 as a ligand of non-phosphorylated resting TCRs. Using dominant-negative and knockdown approaches we demonstrate that ß-arrestin-1 is required for the internalization and downregulation of non-engaged bystander TCRs. Furthermore, TCR triggering provokes the ß-arrestin-1-mediated downregulation of the G-protein coupled chemokine receptor CXCR4, but not of other control receptors. We demonstrate that ß-arrestin-1 recruitment to the TCR, and bystander TCR and CXCR4 downregulation, are mechanistically mediated by the TCR-triggered PKC-mediated phosphorylation of ß-arrestin-1 at Ser163. This mechanism allows the first triggered TCRs to deliver a stop migration signal, and to promote the internalization of distal TCRs and CXCR4 and their translocation to the IS. This receptor crosstalk mechanism is critical to sustain the TCR signal.
Asunto(s)
Arrestinas/metabolismo , Regulación de la Expresión Génica/inmunología , Sinapsis Inmunológicas/metabolismo , Modelos Inmunológicos , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/inmunología , Animales , Western Blotting , Electroporación , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inmunoprecipitación , Células Jurkat , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Pirimidinas , Receptores CXCR4/metabolismo , Imagen de Lapso de Tiempo , beta-Arrestina 1 , beta-ArrestinasRESUMEN
Modulation of TCR signaling upon ligand binding is achieved by changes in the equilibrium between TCR degradation, recycling and synthesis; surprisingly, the molecular mechanism of such an important process is not fully understood. Here, we describe the role of a new player in the mediation of TCR degradation: the endocytic adaptor Numb. Our data show that Numb inhibition leads to abnormal intracellular distribution and defective TCR degradation in mature T lymphocytes. In addition, we find that Numb simultaneously binds to both Cbl and a site within CD3ε that overlaps with the Nck binding site. As a result, Cbl couples specifically to the CD3ε chain to mediate TCR degradation. The present study unveils a novel role of Numb that lies at the heart of TCR signaling initiation and termination.
Asunto(s)
Complejo CD3/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteolisis , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Oncogénicas/metabolismo , Unión Proteica/genética , Transporte de Proteínas/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Eliminación de Secuencia/genéticaRESUMEN
Despite the low affinity of the T-cell antigen receptor (TCR) for its peptide/major histocompatibility complex (pMHC) ligand, T cells are very sensitive to their antigens. This paradox can be resolved if we consider that the TCR may be organized into pre-existing oligomers or nanoclusters. Such structures could improve antigen recognition by increasing the functional affinity (avidity) of the TCR-pMHC interaction and by allowing cooperativity between individual TCRs. Up to approximately 20 TCRs become tightly apposed in these nanoclusters, often in a linear manner, and such structures could reflect a relatively generalized phenomenon: the non-random concentration of membrane receptors in specific areas of the plasma membrane known as protein islands. The association of TCRs into nanoclusters can explain the enhanced kinetics of the pMHC-TCR interaction in two dimensional versus three dimensional systems, but also their existence calls for a revision of the TCR triggering models based on pMHC-induced TCR clustering. Interestingly, the B-cell receptor and the FcεRI have also been shown to form nanoclusters, suggesting that the formation of pre-existing receptor oligomers could be widely used in the immune system.
Asunto(s)
Complejos Multiproteicos/metabolismo , Nanoestructuras , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Animales , Evolución Molecular , Humanos , Conformación Molecular , Complejos Multiproteicos/química , Agregación de Receptores/inmunología , Receptor Cross-Talk/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de SeñalRESUMEN
In the last decade an increasing number of plasma membrane (PM) proteins have been shown to be non-randomly distributed but instead forming submicron-sized oligomers called nanoclusters. Nanoclusters exist independently of the ligand-bound state of the receptors and their existence implies a high degree of lateral organisation of the PM and its proteins. The mechanisms that drive receptor nanoclustering are largely unknown. One well-defined example of a transmembrane receptor that forms nanoclusters is the T cell antigen receptor (TCR), a multisubunit protein complex whose nanoclustering influences its activity. Membrane lipids, namely cholesterol and sphingomyelin, have been shown to contribute to TCR nanoclustering. However, the identity of the membrane microdomain in which the TCR resides remains controversial. Using a GFP-labeled TCR we show here that the resting TCR localized in the disordered domain of giant PM vesicles (GPMVs) and PM spheres (PMSs) and that single and nanoclustered TCRs are found in the high-density fractions in sucrose gradients. Both findings are indicative of non-raft localization. We discuss possible mechanisms of TCR nanoclustering in T cells. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Asunto(s)
Microdominios de Membrana/metabolismo , Nanopartículas/química , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Jurkat , Lípidos/química , Ratones , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Liposomas Unilamelares/metabolismoRESUMEN
The role of microtubules (MTs) in the control and dynamics of the immune synapse (IS) remains unresolved. Here, we show that T cell activation requires the growth of MTs mediated by the plus-end specific protein end-binding 1 (EB1). A direct interaction of the T cell receptor (TCR) complex with EB1 provides the molecular basis for EB1 activity promoting TCR encounter with signalling vesicles at the IS. EB1 knockdown alters TCR dynamics at the IS and prevents propagation of the TCR activation signal to LAT, thus inhibiting activation of PLCγ1 and its localization to the IS. These results identify a role for EB1 interaction with the TCR in controlling TCR sorting and its connection with the LAT/PLCγ1 signalosome.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fosfolipasa C gamma/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Western Blotting , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Células Jurkat , Activación de Linfocitos , Proteínas Asociadas a Microtúbulos/genética , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Receptores de Antígenos de Linfocitos T/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Linfocitos T/metabolismo , Imagen de Lapso de Tiempo , Técnicas del Sistema de Dos Híbridos , Tirosina/metabolismoRESUMEN
The catalytic activity of GDP/GTP exchange factors (GEFs) is considered critical to maintain the typically high activity of Rho GTPases found in cancer cells. However, the large number of them has made it difficult to pinpoint those playing proactive, nonredundant roles in tumors. In this work, we have investigated whether GEFs of the Vav subfamily exert such specific roles in skin cancer. Using genetically engineered mice, we show here that Vav2 and Vav3 favor cooperatively the initiation and promotion phases of skin tumors. Transcriptomal profiling and signaling experiments indicate such function is linked to the engagement of, and subsequent participation in, keratinocyte-based autocrine/paracrine programs that promote epidermal proliferation and recruitment of pro-inflammatory cells. This is a pathology-restricted mechanism because the loss of Vav proteins does not cause alterations in epidermal homeostasis. These results reveal a previously unknown Rho GEF-dependent pro-tumorigenic mechanism that influences the biology of cancer cells and their microenvironment. They also suggest that anti-Vav therapies may be of potential interest in skin tumor prevention and/or treatment.