Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 33(8): 8925-8934, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31034784

RESUMEN

Mitochondrial metabolic plasticity is a key adaptive mechanism in response to changes in cellular metabolic demand. Changes in mitochondrial metabolic efficiency have been linked to pathophysiological conditions, including cancer, neurodegeneration, and obesity. The ubiquitously expressed DJ-1 (Parkinsonism-associated deglycase) is known as a Parkinson's disease gene and an oncogene. The pleiotropic functions of DJ-1 include reactive oxygen species scavenging, RNA binding, chaperone activity, endocytosis, and modulation of major signaling pathways involved in cell survival and metabolism. Nevertheless, how these functions are linked to the role of DJ-1 in mitochondrial plasticity is not fully understood. In this study, we describe an interaction between DJ-1 and 14-3-3ß that regulates the localization of DJ-1, in a hypoxia-dependent manner, either to the cytosol or to mitochondria. This interaction acts as a modulator of mitochondrial metabolic efficiency and a switch between glycolysis and oxidative phosphorylation. Modulation of this novel molecular mechanism of mitochondrial metabolic efficiency is potentially involved in the neuroprotective function of DJ-1 as well as its role in proliferation of cancer cells.-Weinert, M., Millet, A., Jonas, E. A., Alavian, K. N. The mitochondrial metabolic function of DJ-1 is modulated by 14-3-3ß.


Asunto(s)
Proteínas 14-3-3/metabolismo , Mitocondrias/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Animales , Encéfalo/metabolismo , Femenino , Glucólisis , Células HEK293 , Humanos , Fosforilación Oxidativa , Unión Proteica , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley
2.
FASEB J ; 33(6): 6957-6961, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30862197

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is the most commonly used surgical treatment for Parkinson's disease (PD). The disease-modifying aspects of DBS at a cellular level are not fully understood, and the key question of the effect of DBS on the degeneration of the dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) remains to be answered. A major technical hurdle in determining any neuroprotective effect by DBS is its use in mid- to late-stage patients with PD when a majority of the DA neurons have been lost. In this work, we hypothesized that the long-term clinical benefits of DBS are, at least in part, due to a neuromodulatory effect on the SNpc neurons. These changes would affect cellular energetics and mitochondrial metabolism. We examined the number and volume of mitochondria as well as their vicinity to the DA presynaptic terminals postmortem caudate and putamen of 3 healthy individuals, 4 PD cases, and 3 DBS-treated patients. PD seems to have caused an increase in the mean distance between mitochondria and presynaptic terminals as well as a decrease in mean mitochondrial volume and numbers in DA projections. Although there was no difference in distance between mitochondria and presynaptic terminals of SNpc neurons in PD brains vs. DBS-treated brains, DBS treatment seemed to have inhibited or reversed the reduction in mitochondrial volume and numbers caused by PD. These results suggest enhanced metabolic plasticity leading to neuroprotection in the SNpc as a result of STN-DBS.-Mallach, A., Weinert, M., Arthur, J., Gveric, D., Tierney, T. S., Alavian, K. N. Post mortem examination of Parkinson's disease brains suggests decline in mitochondrial biomass, reversed by deep brain stimulation of subthalamic nucleus.


Asunto(s)
Encéfalo/patología , Estimulación Encefálica Profunda , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Biomasa , Encéfalo/anatomía & histología , Humanos , Terminales Presinápticos , Sinapsis
3.
BMC Evol Biol ; 19(1): 219, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791235

RESUMEN

BACKGROUND: Phylogenetic species trees are widely used in inferring evolutionary relationships. Existing software and algorithms mainly focus on phylogenetic inference. However, less attention has been paid to intermediate steps, such as processing extremely large sequences and preparing configure files to connect multiple software. When the species number is large, the intermediate steps become a bottleneck that may seriously affect the efficiency of tree building. RESULTS: Here, we present an easy-to-use pipeline named PhySpeTree to facilitate the reconstruction of species trees across bacterial, archaeal, and eukaryotic organisms. Users need only to input the abbreviations of species names; PhySpeTree prepares complex configure files for different software, then automatically downloads genomic data, cleans sequences, and builds trees. PhySpeTree allows users to perform critical steps such as sequence alignment and tree construction by adjusting advanced options. PhySpeTree provides two parallel pipelines based on concatenated highly conserved proteins and small subunit ribosomal RNA sequences, respectively. Accessory modules, such as those for inserting new species, generating visualization configurations, and combining trees, are distributed along with PhySpeTree. CONCLUSIONS: Together with accessory modules, PhySpeTree significantly simplifies tree reconstruction. PhySpeTree is implemented in Python running on modern operating systems (Linux, macOS, and Windows). The source code is freely available with detailed documentation (https://github.com/yangfangs/physpetools).


Asunto(s)
Filogenia , Programas Informáticos , Algoritmos , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Secuencia de Bases , Evolución Biológica , Eucariontes/clasificación , Eucariontes/genética , Genómica , ARN Ribosómico/genética , Alineación de Secuencia
4.
PLoS Biol ; 13(10): e1002282, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26506154

RESUMEN

Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology.


Asunto(s)
Trastorno Depresivo Mayor/etiología , Represión Enzimática , Proteínas Inmediatas-Precoces/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Trastornos por Estrés Postraumático/metabolismo , Adulto , Animales , Conducta Animal , Estudios de Cohortes , Espinas Dendríticas/enzimología , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Femenino , Técnicas de Transferencia de Gen , Hipocampo/enzimología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Proteínas Inmediatas-Precoces/antagonistas & inhibidores , Proteínas Inmediatas-Precoces/genética , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Neuronas/enzimología , Neuronas/patología , Corteza Prefrontal/enzimología , Corteza Prefrontal/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Ratas Sprague-Dawley , Transducción de Señal , Trastornos por Estrés Postraumático/patología , Trastornos por Estrés Postraumático/psicología , Transmisión Sináptica , Bancos de Tejidos
5.
J Mol Evol ; 85(5-6): 219-233, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29177973

RESUMEN

ATP synthase is a complex universal enzyme responsible for ATP synthesis across all kingdoms of life. The F-type ATP synthase has been suggested to have evolved from two functionally independent, catalytic (F1) and membrane bound (Fo), ancestral modules. While the modular evolution of the synthase is supported by studies indicating independent assembly of the two subunits, the presence of intermediate assembly products suggests a more complex evolutionary process. We analyzed the phylogenetic profiles of the human mitochondrial proteins and bacterial transcription units to gain additional insight into the evolution of the F-type ATP synthase complex. In this study, we report the presence of intermediary modules based on the phylogenetic profiles of the human mitochondrial proteins. The two main intermediary modules comprise the α3ß3 hexamer in the F1 and the c-subunit ring in the Fo. A comprehensive analysis of bacterial transcription units of F1Fo ATP synthase revealed that while a long and constant order of F1Fo ATP synthase genes exists in a majority of bacterial genomes, highly conserved combinations of separate transcription units are present among certain bacterial classes and phyla. Based on our findings, we propose a model that includes the involvement of multiple modules in the evolution of F1Fo ATP synthase. The central and peripheral stalk subunits provide a link for the integration of the F1/Fo modules.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Adenosina Trifosfato/biosíntesis , Evolución Molecular , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Filogenia , Dominios Proteicos , Elementos Estructurales de las Proteínas/genética , Transcripción Genética/genética
6.
J Bioenerg Biomembr ; 49(1): 13-25, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26868013

RESUMEN

Neurons experience high metabolic demand during such processes as synaptic vesicle recycling, membrane potential maintenance and Ca2+ exchange/extrusion. The energy needs of these events are met in large part by mitochondrial production of ATP through the process of oxidative phosphorylation. The job of ATP production by the mitochondria is performed by the F1FO ATP synthase, a multi-protein enzyme that contains a membrane-inserted portion, an extra-membranous enzymatic portion and an extensive regulatory complex. Although required for ATP production by mitochondria, recent findings have confirmed that the membrane-confined portion of the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane, uncoupling of oxidative phosphorylation and cell death. Recent advances in understanding the molecular components of mPTP and its regulatory mechanisms have determined that decreased uncoupling occurs in states of enhanced mitochondrial efficiency; relative closure of mPTP therefore contributes to cellular functions as diverse as cardiac development and synaptic efficacy.


Asunto(s)
Canales Iónicos/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Muerte Celular , Humanos , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Fosforilación Oxidativa
7.
Circ Res ; 116(10): 1680-90, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25767292

RESUMEN

RATIONALE: Iron deficiency without anemia is prevalent in patients with idiopathic pulmonary arterial hypertension and associated with reduced exercise capacity and survival. OBJECTIVES: We hypothesized that iron deficiency is involved in the pathogenesis of pulmonary hypertension and iron replacement is a possible therapeutic strategy. METHODS AND RESULTS: Rats were fed an iron-deficient diet (IDD, 7 mg/kg) and investigated for 4 weeks. Iron deficiency was evident from depleted iron stores (decreased liver, serum iron, and ferritin), reduced erythropoiesis, and significantly decreased transferrin saturation and lung iron stores after 2 weeks IDD. IDD rats exhibited profound pulmonary vascular remodeling with prominent muscularization, medial hypertrophy, and perivascular inflammatory cell infiltration, associated with raised pulmonary artery pressure and right ventricular hypertrophy. IDD rat lungs demonstrated increased expression of hypoxia-induced factor-1α and hypoxia-induced factor-2α, nuclear factor of activated T cells and survivin, and signal transducers and activators of transcription-3 activation, which promote vascular cell proliferation and resistance to apoptosis. Biochemical examination showed reduced mitochondrial complex I activity and mitochondrial membrane hyperpolarization in mitochondria from IDD rat pulmonary arteries. Along with upregulation of the glucose transporter, glucose transporter 1, and glycolytic genes, hk1 and pdk1, lung fluorine-18-labeled 2-fluoro-2-deoxyglucose ligand uptake was significantly increased in IDD rats. The hemodynamic and pulmonary vascular remodeling were reversed by iron replacement (ferric carboxymaltose, 75 mg/kg) and attenuated in the presence of iron deficiency by dichloroacetate and imatinib, 2 putative treatments explored for pulmonary arterial hypertension that target aerobic glycolysis and proliferation, respectively. CONCLUSIONS: These data suggest a major role for iron in pulmonary vascular homeostasis and support the clinical evaluation of iron replacement in patients with pulmonary hypertension.


Asunto(s)
Presión Arterial , Enfermedades Carenciales/complicaciones , Hipertensión Pulmonar/etiología , Deficiencias de Hierro , Arteria Pulmonar/fisiopatología , Remodelación Vascular , Animales , Antihipertensivos/farmacología , Presión Arterial/efectos de los fármacos , Benzamidas/farmacología , Proliferación Celular , Enfermedades Carenciales/sangre , Enfermedades Carenciales/tratamiento farmacológico , Ácido Dicloroacético/farmacología , Modelos Animales de Enfermedad , Eritropoyesis , Compuestos Férricos/farmacología , Ferritinas/sangre , Glucólisis , Hematínicos/farmacología , Homeostasis , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/prevención & control , Hipertrofia Ventricular Derecha/sangre , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/fisiopatología , Mesilato de Imatinib , Hierro/sangre , Hígado/metabolismo , Masculino , Maltosa/análogos & derivados , Maltosa/farmacología , Piperazinas/farmacología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Pirimidinas/farmacología , Ratas Sprague-Dawley , Transducción de Señal , Factores de Tiempo , Transferrina/metabolismo , Remodelación Vascular/efectos de los fármacos
8.
Handb Exp Pharmacol ; 240: 21-46, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27590224

RESUMEN

Mitochondrial ATP generation by oxidative phosphorylation combines the stepwise oxidation by the electron transport chain (ETC) of the reducing equivalents NADH and FADH2 with the generation of ATP by the ATP synthase. Recent studies show that the ATP synthase is not only essential for the generation of ATP but may also contribute to the formation of the mitochondrial permeability transition pore (PTP). We present a model, in which the PTP is located within the c-subunit ring in the Fo subunit of the ATP synthase. Opening of the PTP was long associated with uncoupling of the ETC and the initiation of programmed cell death. More recently, it was shown that PTP opening may serve a physiologic role: it can transiently open to regulate mitochondrial signaling in mature cells, and it is open in the embryonic mouse heart. This review will discuss how the ATP synthase paradoxically lies at the center of both ATP generation and cell death.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/fisiología , ATPasas de Translocación de Protón Mitocondriales/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Apoptosis , Transporte de Electrón , Metabolismo Energético , Humanos , Poro de Transición de la Permeabilidad Mitocondrial
9.
Proc Natl Acad Sci U S A ; 111(29): 10580-5, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24979777

RESUMEN

Mitochondria maintain tight regulation of inner mitochondrial membrane (IMM) permeability to sustain ATP production. Stressful events cause cellular calcium (Ca(2+)) dysregulation followed by rapid loss of IMM potential known as permeability transition (PT), which produces osmotic shifts, metabolic dysfunction, and cell death. The molecular identity of the mitochondrial PT pore (mPTP) was previously unknown. We show that the purified reconstituted c-subunit ring of the FO of the F1FO ATP synthase forms a voltage-sensitive channel, the persistent opening of which leads to rapid and uncontrolled depolarization of the IMM in cells. Prolonged high matrix Ca(2+) enlarges the c-subunit ring and unhooks it from cyclophilin D/cyclosporine A binding sites in the ATP synthase F1, providing a mechanism for mPTP opening. In contrast, recombinant F1 beta-subunit applied exogenously to the purified c-subunit enhances the probability of pore closure. Depletion of the c-subunit attenuates Ca(2+)-induced IMM depolarization and inhibits Ca(2+) and reactive oxygen species-induced cell death whereas increasing the expression or single-channel conductance of the c-subunit sensitizes to death. We conclude that a highly regulated c-subunit leak channel is a candidate for the mPTP. Beyond cell death, these findings also imply that increasing the probability of c-subunit channel closure in a healthy cell will enhance IMM coupling and increase cellular metabolic efficiency.


Asunto(s)
Canales Iónicos/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Animales , Calcio/farmacología , Muerte Celular/efectos de los fármacos , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Liposomas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Mutación/genética , Conformación Proteica , ATPasas de Translocación de Protón/química , Ratas , Especies Reactivas de Oxígeno/metabolismo
10.
Mol Pharmacol ; 87(1): 1-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25332381

RESUMEN

Inefficiency of oxidative phosphorylation can result from futile leak conductance through the inner mitochondrial membrane. Stress or injury may exacerbate this leak conductance, putting cells, and particularly neurons, at risk of dysfunction and even death when energy demand exceeds cellular energy production. Using a novel method, we have recently described an ion conductance consistent with mitochondrial permeability transition pore (mPTP) within the c-subunit of the ATP synthase. Excitotoxicity, reactive oxygen species-producing stimuli, or elevated mitochondrial matrix calcium opens the channel, which is inhibited by cyclosporine A and ATP/ADP. Here we show that ATP and the neuroprotective drug dexpramipexole (DEX) inhibited an ion conductance consistent with this c-subunit channel (mPTP) in brain-derived submitochondrial vesicles (SMVs) enriched for F1FO ATP synthase (complex V). Treatment of SMVs with urea denatured extramembrane components of complex V, eliminated DEX- but not ATP-mediated current inhibition, and reduced binding of [(14)C]DEX. Direct effects of DEX on the synthesis and hydrolysis of ATP by complex V suggest that interaction of the compound with its target results in functional conformational changes in the enzyme complex. [(14)C]DEX bound specifically to purified recombinant b and oligomycin sensitivity-conferring protein subunits of the mitochondrial F1FO ATP synthase. Previous data indicate that DEX increased the efficiency of energy production in cells, including neurons. Taken together, these studies suggest that modulation of a complex V-associated inner mitochondrial membrane current is metabolically important and may represent an avenue for the development of new therapeutics for neurodegenerative disorders.


Asunto(s)
Benzotiazoles/farmacología , Ciclosporina/farmacología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Encéfalo/citología , Encéfalo/enzimología , Humanos , Membranas Mitocondriales/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial , Pramipexol
11.
Pharmacol Res ; 99: 382-92, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25956324

RESUMEN

Ion transport across the mitochondrial inner and outer membranes is central to mitochondrial function, including regulation of oxidative phosphorylation and cell death. Although essential for ATP production by mitochondria, recent findings have confirmed that the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane and cell death. This review will discuss recent advances in understanding the molecular components of mPTP, its regulatory mechanisms and how these contribute directly to its physiological as well as pathological roles.


Asunto(s)
Adenosina Trifosfato/metabolismo , Muerte Celular/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial
12.
J Biomed Sci ; 21: 27, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24685177

RESUMEN

Specific vulnerability and degeneration of the dopaminergic neurons in the substantia nigra pars compacta of the midbrain is the pathological hallmark of Parkinson's disease. A number of transcription factors regulate the birth and development of this set of neurons and some remain constitutively expressed throughout life. These maintenance transcription factors are closely associated with essential neurophysiological functions and are required ultimately for the long-term survival of the midbrain dopaminergic neurons. The current review describes the role of two such factors, Nurr1 and engrailed, in differentiation, maturation, and in normal physiological functions including acquisition of neurotransmitter identity. The review will also elucidate the relationship of these factors with life, vulnerability, degeneration and death of mesencephalic dopaminergic neurons in the context of Parkinson's disease.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteínas de Homeodominio/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Enfermedad de Parkinson/genética , Factores de Transcripción/genética , Diferenciación Celular/genética , Proteínas de Homeodominio/metabolismo , Humanos , Mesencéfalo/metabolismo , Neurotransmisores/genética , Neurotransmisores/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Sustancia Negra/metabolismo , Factores de Transcripción/metabolismo
13.
Dev Cell ; 58(22): 2597-2613.e4, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37673063

RESUMEN

An instructive role for metabolism in embryonic patterning is emerging, although a role for mitochondria is poorly defined. We demonstrate that mitochondrial oxidative metabolism establishes the embryonic patterning center, the Spemann-Mangold Organizer, via hypoxia-inducible factor 1α (Hif-1α) in Xenopus. Hypoxia or decoupling ATP production from oxygen consumption expands the Organizer by activating Hif-1α. In addition, oxygen consumption is 20% higher in the Organizer than in the ventral mesoderm, indicating an elevation in mitochondrial respiration. To reconcile increased mitochondrial respiration with activation of Hif-1α, we discovered that the "free" c-subunit ring of the F1Fo ATP synthase creates an inner mitochondrial membrane leak, which decouples ATP production from respiration at the Organizer, driving Hif-1α activation there. Overexpression of either the c-subunit or Hif-1α is sufficient to induce Organizer cell fates even when ß-catenin is inhibited. We propose that mitochondrial leak metabolism could be a general mechanism for activating Hif-1α and Wnt signaling.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Mitocondrias , Organizadores Embrionarios , Animales , Adenosina Trifosfato/metabolismo , Hipoxia , Mitocondrias/metabolismo , Organizadores Embrionarios/metabolismo , Xenopus laevis
14.
Am J Physiol Endocrinol Metab ; 303(2): E191-9, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22550069

RESUMEN

NADPH is an important component of the antioxidant defense system and a proposed mediator in glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells. An increase in the NADPH/NADP(+) ratio has been reported to occur within minutes following the rise in glucose concentration in ß-cells. However, 30 min following the increase in glucose, the total NADPH pool also increases through a mechanism not yet characterized. NAD kinase (NADK) catalyzes the de novo formation of NADP(+) by phosphorylation of NAD(+). NAD kinases have been shown to be essential for redox regulation, oxidative stress defense, and survival in bacteria and yeast. However, studies on NADK in eukaryotic cells are scarce, and the function of this enzyme has not been described in ß-cells. We employed INS-1 832/13 cells, an insulin-secreting rat ß-cell line, and isolated rodent islets to investigate the role of NADK in ß-cell metabolic pathways. Adenoviral-mediated overexpression of NADK resulted in a two- to threefold increase in the total NADPH pool and NADPH/NADP(+) ratio, suggesting that NADP(+) formed by the NADK-catalyzed reaction is rapidly reduced to NADPH via cytosolic reductases. This increase in the NADPH pool was accompanied by an increase in GSIS in NADK-overexpressing cells. Furthermore, NADK overexpression protected ß-cells against oxidative damage by the redox cycling agent menadione and reversed menadione-mediated inhibition of GSIS. Knockdown of NADK via shRNA exerted the opposite effect on all these parameters. These data suggest that NADK kinase regulates intracellular redox and affects insulin secretion and oxidative defense in the ß-cell.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , NADP/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Glucosa/farmacología , Células HEK293 , Humanos , Secreción de Insulina , Células Secretoras de Insulina/enzimología , Masculino , Ratones , Ratones Endogámicos , Estrés Oxidativo/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ratas , Ratas Sprague-Dawley
16.
J Neurosurg ; : 1-8, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35171812

RESUMEN

OBJECTIVE: Magnetic resonance-guided focused ultrasound (MRgFUS) is an incisionless procedure capable of thermoablation through the focus of multiple acoustic beams. Although MRgFUS is currently approved for the treatment of tremor in adults, its safety and feasibility profile for intracranial lesions in the pediatric and young adult population remains unknown. METHODS: The long-term outcomes of a prospective single-center, single-arm trial of MRgFUS at Nicklaus Children's Hospital in Miami, Florida, are presented. Patients 15-22 years of age with centrally located lesions were recruited, clinically consistent with WHO grade I tumors that require surgical intervention. This cohort consisted of 4 patients with hypothalamic hamartoma (HH), and 1 patient with tuberous sclerosis complex harboring a subependymal giant cell astrocytoma (SEGA). RESULTS: In each case, high-intensity FUS was used to target the intracranial lesion. Real-time MRI was used to monitor the thermoablations. Primary outcomes of interest were tolerability, feasibility, and safety of FUS. The radiographic ablation volume on intra- and postoperative MRI was also assessed. All 5 patients tolerated the procedure without any complications. Successful thermoablation was achieved in 4 of the 5 cases; the calcified SEGA was undertreated due to intratumor calcification, which prevented attainment of the target ablation temperature. The HHs underwent target tissue thermoablations that led to MR signal changes at the treatment site. For the patients harboring HHs, FUS thermoablations occurred without procedure-related complications and led to improvement in seizure control or hypothalamic hyperphagia. All 5 patients were discharged home on postoperative day 1 or 2, without any readmissions. There were no cases of hemorrhage, electrolyte derangement, endocrinopathy, or new neurological deficit in this cohort. CONCLUSIONS: This experience demonstrates that FUS thermoablation of centrally located brain lesions in adolescents and young adults can be performed safely and that it provides therapeutic benefit for associated symptoms.

17.
Brain ; 133(Pt 7): 2022-31, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20573704

RESUMEN

Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson's disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease. Here, we demonstrate elevated expression of the transcription factor orthodenticle homeobox 2 in A10 dopaminergic neurons of embryonic and adult mouse, primate and human midbrain. Overexpression of orthodenticle homeobox 2 using lentivirus increased levels of known A10 elevated genes, including neuropilin 1, neuropilin 2, slit2 and adenylyl cyclase-activating peptide in both MN9D cells and ventral mesencephalic cultures, whereas knockdown of endogenous orthodenticle homeobox 2 levels via short hairpin RNA reduced expression of these genes in ventral mesencephalic cultures. Lack of orthodenticle homeobox 2 in the ventral mesencephalon of orthodenticle homeobox 2 conditional knockout mice caused a reduction of midbrain dopaminergic neurons and selective loss of A10 dopaminergic projections. Orthodenticle homeobox 2 overexpression protected dopaminergic neurons in ventral mesencephalic cultures from Parkinson's disease-relevant toxin, 1-methyl-4-phenylpyridinium, whereas downregulation of orthodenticle homeobox 2 using short hairpin RNA increased their susceptibility. These results show that orthodenticle homeobox 2 is important for establishing subgroup phenotypes of post-mitotic midbrain dopaminergic neurons and may alter neuronal vulnerability.


Asunto(s)
Axones/fisiología , Dopamina/fisiología , Mesencéfalo/fisiología , Neuronas/fisiología , Factores de Transcripción Otx/fisiología , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Axones/efectos de los fármacos , Axones/patología , Células Cultivadas , Femenino , Humanos , Masculino , Mesencéfalo/efectos de los fármacos , Mesencéfalo/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitosis , Neuronas/efectos de los fármacos , Neuronas/patología , Fenotipo
18.
J Biomed Sci ; 17: 66, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20716345

RESUMEN

BACKGROUND: Parkinson's disease is the second most common neurodegenerative disorder. The pathological hallmark of the disease is degeneration of midbrain dopaminergic neurons. Genetic association studies have linked 13 human chromosomal loci to Parkinson's disease. Identification of gene(s), as part of the etiology of Parkinson's disease, within the large number of genes residing in these loci can be achieved through several approaches, including screening methods, and considering appropriate criteria. Since several of the identified Parkinson's disease genes are expressed in substantia nigra pars compact of the midbrain, expression within the neurons of this area could be a suitable criterion to limit the number of candidates and identify PD genes. METHODS: In this work we have used the combination of findings from six rodent transcriptome analysis studies on the gene expression profile of midbrain dopaminergic neurons and the PARK loci in OMIM (Online Mendelian Inheritance in Man) database, to identify new candidate genes for Parkinson's disease. RESULTS: Merging the two datasets, we identified 20 genes within PARK loci, 7 of which are located in an orphan Parkinson's disease locus and one, which had been identified as a disease gene. In addition to identifying a set of candidates for further genetic association studies, these results show that the criteria of expression in midbrain dopaminergic neurons may be used to narrow down the number of genes in PARK loci for such studies.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Sustancia Negra/citología , Animales , Mapeo Cromosómico , Biología Computacional , Perfilación de la Expresión Génica , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Ratas
19.
Cell Death Dis ; 10(6): 469, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197129

RESUMEN

Familial Parkinson's disease (PD) protein DJ-1 mutations are linked to early onset PD. We have found that DJ-1 binds directly to the F1FO ATP synthase ß subunit. DJ-1's interaction with the ß subunit decreased mitochondrial uncoupling and enhanced ATP production efficiency while in contrast mutations in DJ-1 or DJ-1 knockout increased mitochondrial uncoupling, and depolarized neuronal mitochondria. In mesencephalic DJ-1 KO cultures, there was a progressive loss of neuronal process extension. This was ameliorated by a pharmacological reagent, dexpramipexole, that binds to ATP synthase, closing a mitochondrial inner membrane leak and enhancing ATP synthase efficiency. ATP synthase c-subunit can form an uncoupling channel; we measured, therefore, ATP synthase F1 (ß subunit) and c-subunit protein levels. We found that ATP synthase ß subunit protein level in the DJ-1 KO neurons was approximately half that found in their wild-type counterparts, comprising a severe defect in ATP synthase stoichiometry and unmasking c-subunit. We suggest that DJ-1 enhances dopaminergic cell metabolism and growth by its regulation of ATP synthase protein components.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Animales , Expresión Génica , Humanos , Potencial de la Membrana Mitocondrial/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Unión Proteica , Proteína Desglicasa DJ-1/genética , Ratas Sprague-Dawley
20.
Mov Disord ; 23(3): 319-28, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18044702

RESUMEN

Since mesencephalic dopaminergic neurons are associated to one of the most prominent human neurodegenerative ailments, Parkinson's disease, the molecular mechanism underlying their development and adult cellular properties has been the subject of intense investigations. Throughout life, transcription factors determine the fate of this neuronal population and control essential processes such as localization in the ventral midbrain, their neurotransmitter phenotype, their target innervations and synapse formation. Studies of transcription factors, such as Nurr1, Pitx3, Engrailed-1/2, and Lmx1a/b, have not only revealed importance of these genes during development, but also roles in the long-term survival and maintenance of these neurons. In this review, we will discuss the function of these transcription factors throughout the life of mesencephalic dopaminergic neurons and their value in the study of the disease mechanism.


Asunto(s)
Dopamina/metabolismo , Mesencéfalo/citología , Neuronas/metabolismo , Factores de Transcripción/fisiología , Animales , Muerte , Humanos , Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA