Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
AAPS PharmSciTech ; 21(5): 191, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661587

RESUMEN

Polysaccharide-based aerogels are promising drug carriers. Being nanoporous with a high specific surface area allows their use as a drug vehicle for various delivery routes. Intratracheal and intravenous administration of free cisplatin causes toxicity in the rat liver, lungs, and kidneys. In this work, microspherical particles based on alginate-chitosan without a traditional crosslinker were evaluated for targeted delivery of cisplatin by intratracheal administration. The aerogel particles were prepared using the emulsion gelation method, followed by supercritical carbon dioxide extraction. Loading of cisplatin on the prepared porous particles was performed by impregnation using supercritical fluid technology. The prepared carrier and the loaded drug were evaluated for drug content, release, and in vivo acute and subacute toxicity. Cisplatin was successfully loaded (percent drug loading > 76%) on the prepared carrier (particle size = 0.433 ± 0.091 µm) without chemically interacting with the carrier and without losing its crystal form. Sixty percent of cisplatin was released within 2 h, and the rest was loaded inside the polymer pores and had a sustained first-order release over 6 h. Loading cisplatin on the carrier developed herein reduced the cisplatin lung toxicity but increased the liver toxicity after intratracheal administration with nephrotoxicity being proportional to cisplatin dose in case of carrier-loaded cisplatin. Moreover, loading cisplatin on the carrier significantly reduced mortality rate and prevented weight loss in rats as compared to free cisplatin in subacute studies after intratracheal administration. Thus, the developed carrier showed high potential for targeted delivery of cisplatin for lung cancer treatment by inhalation. Graphical abstract.


Asunto(s)
Alginatos/química , Antineoplásicos/uso terapéutico , Quitosano/química , Portadores de Fármacos/química , Desarrollo de Medicamentos , Neoplasias Pulmonares/tratamiento farmacológico , Nanoporos , Administración por Inhalación , Animales , Antineoplásicos/química , Antineoplásicos/toxicidad , Cisplatino , Tamaño de la Partícula , Polímeros , Porosidad , Ratas , Solubilidad
2.
Electrophoresis ; 37(3): 529-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26534833

RESUMEN

PDMS and PMMA are two of the most used polymers in the fabrication of lab-on-chip or microfluidic devices. In order to use these polymers in biological applications, it is sometimes essential to be able to bind biomolecules such as proteins and DNA to the surface of these materials. In this work, we have evaluated a number of processes that have been developed to bind protein to PDMS surfaces which include passive adsorption, passive adsorption with glutaraldehyde cross-linking, (3-aminopropyl) triethoxysilane functionalization followed by glutaraldehyde or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride cross-linkers. It has been shown that the latter technique--using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride--results in more than twice the bonding of protein to the surface of PDMS microchannels than proteins binding passively. We have also evaluated a few techniques that have been tested for the functionalization of PMMA microchannels where we have found that the use of polyethyleneimine (PEI) has led to the strongest protein-PMMA microchannel bond. We finally demonstrated the effect of PDMS curing methodology on protein adsorption to its surface, and showed that increased curing time is the factor that reduces passive adsorption the most.


Asunto(s)
Dimetilpolisiloxanos/química , Proteínas Inmovilizadas/química , Técnicas Analíticas Microfluídicas/instrumentación , Polimetil Metacrilato/química , Técnicas Analíticas Microfluídicas/métodos , Propiedades de Superficie
3.
Discov Nano ; 19(1): 15, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253925

RESUMEN

In this work, iron oxide (Fe3O4) magnetic nanoparticles (MNPs) and graphene oxide (GO) nanosheets were prepared via the co-precipitation technique and the Modified Hummer method. Fe3O4 MNPs and GO nanosheets were combined to prepare Fe3O4/GO nanocomposite and subsequently conjugated with Digitonin (DIG) in order to obtain a dual-targeted delivery system based on DIG/Fe3O4/GO nanocomposite. SEM images reveal the presence of Fe3O4 MNPs at a scale of 100 nm, exhibiting dispersion between the GO nanosheets. Aggregation of the DIG/Fe3O4/GO nanocomposite was observed at various size scales. The XRD structural analysis confirms the crystal structure of the prepared samples. The Fe3O4 MNPs demonstrated the main XRD-diffracted peaks. Also, GO nanosheets exhibit crystalline characteristics on the (001) and (002) planes. The predominant peaks observed in the DIG/GO/Fe3O4 nanocomposite are attributed to the crystal phases of Fe3O4 MNPs. The FT-IR vibrational modes observed in the GO/DIG/Fe3O4 nanocomposite indicate the presence of crosslinking between GO nanosheet layers and the Fe3O4 MNPs. The antioxidant activity of the prepared samples was measured and the DIG/GO/Fe3O4 nanocomposite demonstrated a significantly high antioxidant activity in both 2-diphenyl-1-picrylhydrazyl (DPPH·) and 2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS·+) tests.

4.
RSC Adv ; 14(29): 21180-21189, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38966808

RESUMEN

The synthesis and characterization of spinel cobalt-based metal oxides (MCo2O4) with varying 3d-transition metal ions (Ni, Fe, Cu, and Zn) were explored using a hydrothermal process (140 °C for two hours) to be used as alternative counter electrodes for Pt-free dye-sensitized solar cells (DSSCs). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed distinct morphologies for each metal oxide, such as NiCo2O4 nanosheets, Cu Co2O4 nanoleaves, Fe Co2O4 diamond-like, and Zn Co2O4 hexagonal-like structures. The X-ray diffraction analysis confirmed the cubic spinel structure for the prepared MCo2O4 films. The functional groups of MCo2O4 materials were recognized in metal oxides throughout Fourier transform infrared (FTIR) analysis. The local structure analysis using X-ray absorption fine structure (XAFS) at Fe and Co K-edge identified octahedral (Oh) Co3+ and tetrahedral (Td) Co2+ coordination, with Zn2+ and Cu2+ favoring Td sites, while Ni3+ and Fe3+ preferred Oh active sites. Further investigations utilizing the Fourier transformation (FT) analysis showed comparable coordination numbers and interatomic distances ranked as Co-Cu > Co-Fe > Zn-Co > Co-Ni. Furthermore, the utilization of MCo2O4 thin films as counter electrodes in DSSC fabrication showed promising results. Notably, solar cells based on CuCo2O4 and ZnCo2O4 counter electrodes showed 1.9% and 1.13% power conversion efficiency, respectively. These findings indicate the potential of employing these binary metal oxides for efficient and cost-effective photovoltaic device production.

5.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38399471

RESUMEN

Propionibacterium acnes plays a critical role in the development of acne vulgaris. There has been a rise in the number of patients carrying P. acnes strains that are resistant to antibiotics. Thus, alternative anti-microbial agents are required. Zinc oxide (ZnO-NPs) and silver (Ag-NPs) nanoparticles can be used against several antibiotic-resistant bacteria. The impact of Ag-NPs and ZnO-NPs against two clinical strains of P. acnes, P1 and P2, and a reference strain, NCTC747, were investigated in this research. A chemical approach for the green synthesis of Ag-NPs and ZnO-NPs from Peganum harmala was employed. The microtiter plate method was used to examine the effects of NPs on bacterial growth, biofilm development, and biofilm eradication. A broth microdilution process was performed in order to determine minimal inhibitory (MIC) concentrations. Ag-NPs and ZnO-NPs had a spherical shape and average dimensions of 10 and 50 nm, respectively. MIC values for all P. acnes strains for Ag-NPs and ZnO-NPs were 125 µg/mL and 250 µg/mL, respectively. Ag-NP and ZnO-NP concentrations of 3.9- 62.5 µg/mL and 15-62.5 µg/mL significantly inhibited the growth and biofilm formation of all P. acnes strains, respectively. ZnO-NP concentrations of 15-62.5 µg/mL significantly inhibited the growth of NCTC747 and P2 strains. The growth of P1 was impacted by concentrations of 31.25 µg/mL and 62.5 µg/mL. Biofilm formation in the NCTC747 strain was diminished by a ZnO-NP concentration of 15 µg/mL. The clinical strains of P. acnes were only affected by ZnO-NP titres of more than 31.25 µg/mL. Established P. acne biofilm biomass was significantly reduced in all strains at a Ag-NP and ZnO-NP concentration of 62.5 µg/mL. The findings demonstrated that Ag-NPs and ZnO-NPs exert an anti-bacterial effect against P. acnes. Further research is required to determine their potential utility as a treatment option for acne.

6.
BMC Res Notes ; 16(1): 23, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855182

RESUMEN

OBJECTIVE: Because of the need to extensively study the synergistic activity of metallic nanoparticles, this study aimed to evaluate the antibacterial activity of mixed metallic nanoparticles, made by differing the weight mixing ratio. We prepared multi-metallic nanorods (NRs) by chemical reduction method, with different ratio combinations of silver Ag and copper Cu, two main batches of nanorods were produced: bimetallic mix made only of Ag-Cu, and trimetallic mix made of Ag-Cu and lithium Li, AgCu NRs and AgCuLi NRs respectively. NaOH was used in the synthesis for the co-reduction of salt precursors. Ag percentage was varied from 10 to 90% in bimetallic NRs but in the trimetallic NRs, which has a fixed ratio of Li (10%), the percentage of silver precursor was from 10 to 80%. The presence of metals was confirmed by energy dispersive X-rays (EDX) analysis. Ion release was detected using inductively coupled plasma spectrometer (ICP) and the values showed that NRs are effective source for ion supply for up to 24 h. The antibacterial activity of metallic NRs was tested against Staphylococcus aureus using Bauer Kirby method. RESULTS: The bi-synergistic mix of Ag and Cu generates more ions than the tri-synergistic mix of Ag, Cu, and Li. Nevertheless, the later was more efficient and showed higher antibacterial activity at lower concentrations. This effect is less likely to be attributed to modality of ion release. Indeed, the results of our work suggest that besides ion release, alloyed nanorods themselves are toxic and the trimetallic mix exhibited more biocidal activity, specifically at Ag salt concentrations of 30%, 50% and 70%.


Asunto(s)
Nanotubos , Infecciones Estafilocócicas , Humanos , Litio , Staphylococcus aureus , Plata/farmacología , Antibacterianos/farmacología , Iones , Cloruro de Sodio , Cloruro de Sodio Dietético
7.
Sci Rep ; 13(1): 5096, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991258

RESUMEN

There is a limitation in the range of effectual antibiotics due to the Pseudomonas aeruginosa (PA) infection due to its innate antimicrobial resistance. Researchers have therefore been concentrating their efforts to discover advanced and cost effective antibacterial agents among the ever-increasing PA bacterial resistance strains. It has been discovered that various nanoparticles can be employed as antimicrobial agents. Here, we evaluated the antibacterial properties of the Zinc Oxide nanoparticles (ZnO NPs), which was biosynthesized, being examined on six hospital strains of PA alongside a reference strain (ATCC 27853). A chemical approach was applied to biosynthesize the ZnO NPs from Olea europaea was performed, and confirmed by using X-ray diffraction and Scanning Electron Microscopes. The nanoparticles then applied their antibacterial properties to examine them against six clinically isolated PA strains alongside the reference strain. This process tested for the results of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The Growth, biofilm formation and eradication were analyzed. The influence of the differentiating degrees ZnO NPs in regard to Quorom sensing gene expression were further examined. The ZnO NPs exhibited a crystalline size and diameter (Dc) of 40-60 nm and both the MIC and MBC tests revealed positive outcomes of concentrations of 3 and 6 mg/ml for each PA strain, respectively. At sub inhibitory concentration, The ZnO NPs were found to significantly inhibit the growth and biofilm formation of all PA strains and decreases in the biomass and metabolic behavior of PA established biofilms; these decreases varied depending on the dosage. At ZnO NPs concentrations of 900 µg/ml, the expression of majority of quorum sensing genes of all strains were significantly reduced, at ZnO NPs concentrations of 300 µg/ml, few genes were significantly impacted. In conclusion, the treatment of PA and could be other antibiotic resistant bacteria can therefore be approached by using ZnO NPs as it has been uncovered that they withhold advanced antibacterial properties.


Asunto(s)
Olea , Infecciones por Pseudomonas , Óxido de Zinc , Óxido de Zinc/química , Olea/metabolismo , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas
8.
Sci Rep ; 13(1): 8876, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264060

RESUMEN

The high antibiotic resistance of Pseudomonas aeruginosa (PA) makes it critical to develop alternative antimicrobial agents that are effective and affordable. One of the many applications of silver nanoparticles (Ag NPs) is their use as an antimicrobial agent against bacteria resistant to common antibiotics. The key purpose of this research was to assess the antibacterial and antibiofilm effectiveness of biosynthesized Ag NPs against six biofilm-forming clinically isolated strains of PA and one reference strain (ATCC 27853). Ag NPs were biosynthesized using a seed extract of Peganum harmala as a reducing agent. Ag NPs were characterized by Ultraviolet-visible (UV-Vis) spectroscopy and scanning transmission electron microscopy (STEM). The effect of Ag NPs on biofilm formation and eradication was examined through micro-titer plate assays, and the minimal inhibitory (MIC) and minimum bactericidal (MBC) concentrations determined. In addition, real-time polymerase chain reactions (RT-PCR) were performed to examine the effects of Ag NPs on the expression of seven PA biofilm-encoding genes (LasR, LasI, LssB, rhIR, rhII, pqsA and pqsR). The biosynthesized Ag NPs were spherically-shaped with a mean diameter of 11 nm. The MIC for each PA strain was 15.6 µg/ml, while the MBC was 31.25 µg/ml. All PA strains exposed to Ag NPs at sub-inhibitory concentrations (0.22-7.5 µg/ml) showed significant inhibitory effects on growth and biofilm formation. Biomass and biofilm metabolism were reduced dependent on Ag NP concentration. The expression of the quorum-sensing genes of all strains were significantly reduced at an Ag NP concentration of 7.5 µg/ml. The results demonstrate the extensive in-vitro antibacterial and antibiofilm performance of Ag NPs and their potential in the treatment of PA infection. It is recommended that future studies examine the possible synergy between Ag NPs and antibiotics.


Asunto(s)
Antiinfecciosos , Fibrosis Quística , Nanopartículas del Metal , Humanos , Pseudomonas aeruginosa , Plata/química , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología
9.
Int J Food Microbiol ; 334: 108838, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-32896745

RESUMEN

White brined cheese may serve as an ideal medium for the growth of foodborne pathogens including E. coli O157:H7. The objectives of this study were i) to evaluate the inhibitory effects of zinc oxide (ZnO) nanoparticles against E. coli O157:H7 at 10 or 37 °C using broth dilution; ii) to address the post-process contamination of white brined cheese with E. coli O157:H7 by using chitosan coating with or without ZnO nanoparticles during storage for 28 d at 4 and 10 °C; and iii) to study the physicochemical characteristics of chitosan coating containing ZnO nanoparticles. ZnO nanoparticles at ≥0.0125% inhibited the growth of three E. coli O157:H7 strains at both 37 and 10 °C. The chitosan coating with or without ZnO nanoparticles significantly reduced the initial numbers of E. coli O157:H7 in white brined cheese by 2.5 and 2.8 log CFU/g, respectively, when stored at 4 °C or by 1.9 and 2.1 log CFU/g, respectively, when stored at 10 °C. The chitosan-ZnO nanoparticle coating was not significantly different (p > 0.05) but was slightly better than chitosan alone as an active, smart packaging material in food applications.


Asunto(s)
Antiinfecciosos/farmacología , Queso/microbiología , Quitosano/química , Escherichia coli O157/efectos de los fármacos , Óxido de Zinc/química , Antiinfecciosos/química , Quitosano/farmacología , Recuento de Colonia Microbiana , Escherichia coli O157/crecimiento & desarrollo , Microbiología de Alimentos , Almacenamiento de Alimentos , Nanopartículas/química , Sales (Química)/análisis , Temperatura , Óxido de Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA