Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Physiol Rev ; 91(2): 555-602, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21527732

RESUMEN

Axons are generally considered as reliable transmission cables in which stable propagation occurs once an action potential is generated. Axon dysfunction occupies a central position in many inherited and acquired neurological disorders that affect both peripheral and central neurons. Recent findings suggest that the functional and computational repertoire of the axon is much richer than traditionally thought. Beyond classical axonal propagation, intrinsic voltage-gated ionic currents together with the geometrical properties of the axon determine several complex operations that not only control signal processing in brain circuits but also neuronal timing and synaptic efficacy. Recent evidence for the implication of these forms of axonal computation in the short-term dynamics of neuronal communication is discussed. Finally, we review how neuronal activity regulates both axon morphology and axonal function on a long-term time scale during development and adulthood.


Asunto(s)
Axones/fisiología , Potenciales de Acción/fisiología , Animales , Axones/patología , Proliferación Celular , Canalopatías/patología , Fenómenos Electrofisiológicos , Humanos , Canales Iónicos/fisiología , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología
2.
Neurobiol Dis ; 80: 80-92, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26007637

RESUMEN

Mutations in the KCNQ2 gene encoding the voltage-dependent potassium M channel Kv7.2 subunit cause either benign epilepsy or early onset epileptic encephalopathy (EOEE). It has been proposed that the disease severity rests on the inhibitory impact of mutations on M current density. Here, we have analyzed the phenotype of 7 patients carrying the p.A294V mutation located on the S6 segment of the Kv7.2 pore domain (Kv7.2(A294V)). We investigated the functional and subcellular consequences of this mutation and compared it to another mutation (Kv7.2(A294G)) associated with a benign epilepsy and affecting the same residue. We report that all the patients carrying the p.A294V mutation presented the clinical and EEG characteristics of EOEE. In CHO cells, the total expression of Kv7.2(A294V) alone, assessed by western blotting, was only 20% compared to wild-type. No measurable current was recorded in CHO cells expressing Kv7.2(A294V) channel alone. Although the total Kv7.2(A294V) expression was rescued to wild-type levels in cells co-expressing the Kv7.3 subunit, the global current density was still reduced by 83% compared to wild-type heteromeric channel. In a configuration mimicking the patients' heterozygous genotype i.e., Kv7.2(A294V)/Kv7.2/Kv7.3, the global current density was reduced by 30%. In contrast to Kv7.2(A294V), the current density of homomeric Kv7.2(A294G) was not significantly changed compared to wild-type Kv7.2. However, the current density of Kv7.2(A294G)/Kv7.2/Kv7.3 and Kv7.2(A294G)/Kv7.3 channels were reduced by 30% and 50% respectively, compared to wild-type Kv7.2/Kv7.3. In neurons, the p.A294V mutation induced a mislocalization of heteromeric mutant channels to the somato-dendritic compartment, while the p.A294G mutation did not affect the localization of the heteromeric channels to the axon initial segment. We conclude that this position is a hotspot of mutation that can give rise to a severe or a benign epilepsy. The p.A294V mutation does not exert a dominant-negative effect on wild-type subunits but alters the preferential axonal targeting of heteromeric Kv7 channels. Our data suggest that the disease severity is not necessarily a consequence of a strong inhibition of M current and that additional mechanisms such as abnormal subcellular distribution of Kv7 channels could be determinant.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/fisiología , Animales , Encéfalo/metabolismo , Células CHO , Células Cultivadas , Cricetulus , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Hipocampo/metabolismo , Humanos , Canal de Potasio KCNQ2/metabolismo , Mutación , Neuronas/metabolismo , Fenotipo
3.
Biochem Biophys Res Commun ; 411(2): 329-34, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21726526

RESUMEN

Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca(++) depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca(++) could bind the Nav1.1 C-terminal region with micromolar affinity.


Asunto(s)
Encéfalo/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Encéfalo/citología , Células HEK293 , Humanos , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.1 , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Ratas , Canales de Sodio/genética , Espectrometría de Fluorescencia , Técnicas del Sistema de Dos Híbridos
4.
J Neurosci ; 23(11): 4509-18, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12805291

RESUMEN

We herein demonstrate that Kv3.1b subunits are present at nodes of Ranvier in the CNS of both rats and mice. Kv3.1b colocalizes with voltage-gated Na+ channels in a subset of nodes in the spinal cord, particularly those of large myelinated axons. Kv3.1b is abundantly expressed in the gray matter of the spinal cord, but does not colocalize with Na+ channels in initial segments. In the PNS, few nodes are Kv3.1b-positive. During the development of the CNS, Kv3.1b clustering at nodes occurs later than that of Na+ channels, but precedes the juxtaparanodal clustering of Kv1.2. Moreover, in myelin-deficient rats, which have severe CNS dysmyelination, node-like clusters of Kv3.1b and Na+ channels are observed even in regions devoid of oligodendrocytes. Ankyrin G coimmunoprecipitates Kv3.1b in vivo, indicating that these two proteins may interact in the CNS at nodes. 4-Aminopyridine, a K+ channel blocker, broadened the compound action potential recorded from adult rat optic nerve and spinal cord, but not from the sciatic nerve. These effects were also observed in Kv3.1-deficient mice. In conclusion, Kv3.1b is the first K+ channel subunit to be identified in CNS nodes; but Kv3.1b does not account for the effects of 4-aminopyridine on central myelinated tracts.


Asunto(s)
Sistema Nervioso Central/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/biosíntesis , Nódulos de Ranvier/metabolismo , 4-Aminopiridina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Ancirinas/metabolismo , Membrana Celular/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Canal de Potasio Kv.1.1 , Canal de Potasio Kv.1.2 , Masculino , Ratones , Ratones Mutantes , Neuropéptidos/biosíntesis , Oligodendroglía , Nervio Óptico/efectos de los fármacos , Nervio Óptico/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/deficiencia , Canales de Potasio/genética , Pruebas de Precipitina , Subunidades de Proteína/metabolismo , Ratas , Ratas Mutantes , Ratas Wistar , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , Canales de Potasio Shaw , Canales de Sodio/metabolismo
5.
Glia ; 53(1): 13-23, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16078241

RESUMEN

In addition to their role in action potential generation and fast synaptic transmission in neurons, voltage-dependent sodium channels can also be active in glia. Terminal Schwann cells (TSCs) wrap around the nerve terminal arborization at the neuromuscular junction, which they contribute to shape during development and in the postdenervation processes. Using fluorescent in situ hybridization (FISH), immunofluorescence, and confocal microscopy, we detected the neuronal Nav1.6 sodium channel transcripts and proteins in TSCs in normal adult rats and mice. Nav1.6 protein co-localized with the Schwann cell marker S-100 but was not detected in the SV2-positive nerve terminals. The med phenotype in mice is due to a mutation in the SCN8A gene resulting in loss of Nav1.6 expression. It leads to early onset in postnatal life of defects in neuromuscular transmission with minimal alteration of axonal conduction. Strikingly, in mutant mice, the nonmyelinated pre-terminal region of axons showed abundant sprouting at neuromuscular junctions, and most of the alpha-bungarotoxin-labeled endplates were devoid of S-100- or GFAP-positive TSCs. Using specific antibodies against the Nav1.2 and Nav1.6 sodium channels, ankyrin G and Caspr 1, and a pan sodium channel antibody, we found that a similar proportion of ankyrin G-positive nodes of Ranvier express sodium channels in mutant and wild-type animals and that nodal expression of Nav1.2 persists in med mice. Our data supports the hypothesis that the lack of expression of Nav1.6 in Schwann cells at neuromuscular junctions might play a role in the med phenotype.


Asunto(s)
Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades de la Unión Neuromuscular/metabolismo , Unión Neuromuscular/metabolismo , Células de Schwann/metabolismo , Canales de Sodio/genética , Canales de Sodio/metabolismo , Animales , Ancirinas/metabolismo , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/metabolismo , Hibridación Fluorescente in Situ , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Mutantes Neurológicos , Microscopía Confocal , Neuronas Motoras/metabolismo , Neuronas Motoras/ultraestructura , Canal de Sodio Activado por Voltaje NAV1.2 , Canal de Sodio Activado por Voltaje NAV1.6 , Unión Neuromuscular/genética , Unión Neuromuscular/fisiopatología , Enfermedades de la Unión Neuromuscular/genética , Enfermedades de la Unión Neuromuscular/fisiopatología , Fenotipo , Ratas , Proteínas S100/metabolismo , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura , Transmisión Sináptica/genética
6.
Mol Pharmacol ; 69(6): 1931-7, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16505156

RESUMEN

A toxin was purified to homogeneity from the venom of the South American armed spider Phoneutria nigriventer and found to have a molecular mass of 8600 Da and a C-terminally amidated glycine residue. It appears to be identical to Toxin 1 (Tx1) isolated previously from this venom. Tx1 reversibly inhibited sodium currents in Chinese hamster ovary cells expressing recombinant sodium (Na(v)1.2) channels without affecting their fast biophysical properties. The kinetics of inhibition of peak sodium current varied with membrane potential, with on-rates increasing and off-rates decreasing with more depolarized holding potentials in the -100 to -50 mV range. Thus, the apparent affinity of Tx1 for the channel increases as the membrane is depolarized. A mono[(125)I]iodo-Tx1 derivative displayed high-affinity binding to a single class of sites (K(D) = 80 pM, B(max) = 0.43 pmol/mg protein) in rat brain membranes. Solubilized binding sites were immunoprecipitated by antibodies directed against a conserved motif in sodium channel alpha subunits. (125)I-Tx1 binding was competitively displaced by mu conotoxin GIIIB (IC(50) = 0.5 microM) but not by 1 microM tetrodotoxin. However, the inhibition of (125)I-Tx1 binding by mu conotoxin GIIIB was abrogated in the presence of tetrodotoxin (1 microM). Patch-clamp and binding data indicate that P. nigriventer Tx1 is a novel, state-dependent sodium-channel blocker that binds to a site in proximity to pharmacological site 1, overlapping mu conotoxin but not tetrodotoxin binding sites.


Asunto(s)
Proteínas del Tejido Nervioso/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuropéptidos/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Venenos de Araña/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células CHO , Conotoxinas/metabolismo , Conotoxinas/farmacología , Cricetinae , Cricetulus , Radioisótopos de Yodo/metabolismo , Cinética , Potenciales de la Membrana/efectos de los fármacos , Datos de Secuencia Molecular , Peso Molecular , Canal de Sodio Activado por Voltaje NAV1.2 , Neuropéptidos/aislamiento & purificación , Neuropéptidos/metabolismo , Bloqueadores de los Canales de Sodio/aislamiento & purificación , Arañas/metabolismo
7.
J Physiol ; 569(Pt 3): 801-16, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16210352

RESUMEN

The ion channel dynamics that underlie the complex firing patterns of cerebellar granule (CG) cells are still largely unknown. Here, we have characterized the subcellular localization and functional properties of Na+ channels that regulate the excitability of CG cells in culture. As evidenced by RT-PCR and immunocytochemical analysis, morphologically differentiated CG cells expressed Nav1.2 and Nav1.6, though both subunits appeared to be differentially regulated. Nav1.2 was localized at most axon initial segments (AIS) of CG cells from 8 days in vitro DIV 8 to DIV 15. At DIV 8, Nav1.6 was found uniformly throughout somata, dendrites and axons with occasional clustering in a subset of AIS. Accumulation of Nav1.6 at most AIS was evident by DIV 13-14, suggesting it is developmentally regulated at AIS. The specific contribution of these differentially distributed Na+ channels has been assessed using a combination of methods that allowed discrimination between functionally compartmentalized Na+ currents. In agreement with immunolocalization, we found that fast activating-fully inactivating Na+ currents predominate at the AIS membrane and in the somatic plasma membrane.


Asunto(s)
Cerebelo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/metabolismo , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Células Cultivadas , Cerebelo/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Relación Dosis-Respuesta a Droga , Concentración 50 Inhibidora , Activación del Canal Iónico , Potenciales de la Membrana/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.2 , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Sodio/metabolismo , Canales de Sodio/análisis , Canales de Sodio/genética , Tetrodotoxina/farmacología
8.
J Biol Chem ; 277(32): 28996-9004, 2002 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-12036953

RESUMEN

Voltage-dependant sodium channels at the axon initial segment and nodes of Ranvier colocalize with the nodal isoforms of ankyrin(G) (Ank(G) node). Using fusion proteins derived from the intracellular regions of the Nav1.2a subunit and the Ank repeat domain of Ank(G) node, we mapped a major interaction site in the intracellular loop separating alpha subunit domains I-II. This 57-amino acid region binds the Ank repeat region with a K(D) value of 69 nm. We identified another site in intracellular loop III-IV, and we mapped both Nav1.2a binding sites on the ankyrin repeat domain to the region encompassing repeats 12-22. The ankyrin repeat domain did not bind the beta(1) and beta(2) subunit cytoplasmic regions. We showed that in cultured embryonic motoneurons, expression of the beta(2) subunit is not necessary for the colocalization of Ank(G) node with functional sodium channels at the axon initial segment. Antibodies directed against the beta(1) subunit intracellular region, alpha subunit loop III-IV, and Ank(G) node could not co-immunoprecipitate Ank(G) node and sodium channels from Triton X-100 solubilisates of rat brain synaptosomes. Co-immunoprecipitation of sodium channel alpha subunit and of the 270- and 480-kDa AnkG node isoforms was obtained when solubilization conditions that maximize membrane protein extraction were used. However, we could not find conditions that allowed for co-immunoprecipitation of ankyrin with the sodium channel beta(1) subunit.


Asunto(s)
Ancirinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/metabolismo , Sodio/metabolismo , Animales , Axones/metabolismo , Sitios de Unión , Encéfalo/embriología , Encéfalo/metabolismo , Clonación Molecular , Citoplasma/metabolismo , ADN Complementario/metabolismo , Concentración de Iones de Hidrógeno , Metabolismo de los Lípidos , Microscopía Fluorescente , Canal de Sodio Activado por Voltaje NAV1.2 , Octoxinol/farmacología , Pruebas de Precipitina , Unión Proteica , Isoformas de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sinaptosomas/metabolismo
9.
J Physiol ; 541(Pt 1): 25-39, 2002 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12015418

RESUMEN

Molecular determinants of excitability were studied in pure cultures of rat embryonic motoneurons. Using RT-PCR, we have shown here that the spike-generating Na(+) current is supported by Nav1.2 and/or Nav1.3 alpha-subunits. Nav1.1 and Nav1.6 transcripts were also identified. We have demonstrated that alternatively spliced isoforms of Nav1.1 and Nav1.6, resulting in truncated proteins, were predominant during the first week in culture. However, Nav1.6 protein could be detected after 12 days in vitro. The Nav beta 2.1 transcript was not detected, whereas the Nav beta 1.1 transcript was present. Even in the absence of Nav beta 2.1, alpha-subunits were correctly inserted into the initial segment. RT-PCR (at semi-quantitative and single-cell levels) and immunocytochemistry showed that transient K(+) currents result from the expression of Kv4.2 and Kv4.3 subunits. This is the first identification of subunits responsible for a transient K(+) current in spinal motoneurons. The blockage of Kv4.2/Kv4.3 using a specific toxin modified the shape of the action potential demonstrating the involvement of these conductance channels in regulating spike repolarization and the discharge frequency. Among the other Kv alpha-subunits (Kv1.3, 1.4, 1.6, 2.1, 3.1 and 3.3), we showed that the Kv1.6 subunit was partly responsible for the sustained K(+) current. In conclusion, this study has established the first correlation between the molecular nature of voltage-dependent Na(+) and K(+) channels expressed in embryonic rat motoneurons in culture and their electrophysiological characteristics in the period when excitability appears.


Asunto(s)
Embrión de Mamíferos/química , Embrión de Mamíferos/inervación , Neuronas Motoras/química , Neuronas Motoras/fisiología , Canales de Potasio/fisiología , Canales de Sodio/fisiología , Empalme Alternativo , Animales , Células Cultivadas , Estimulación Eléctrica , Electrofisiología , Femenino , Técnica del Anticuerpo Fluorescente , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Canales de Potasio/genética , Embarazo , ARN/análisis , ARN/aislamiento & purificación , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/genética , Médula Espinal/citología , Médula Espinal/embriología , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA