Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
J Am Chem Soc ; 146(17): 11792-11800, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626444

RESUMEN

The large steric profile of the N-heterocyclic boryloxy ligand, -OB(NDippCH)2, and its ability to stabilize the metal-centered HOMO, are exploited in the synthesis of the first example of a "naked" acyclic aluminyl complex, [K(2.2.2-crypt)][Al{OB(NDippCH)2}2]. This system, which is formed by substitution at AlI (rather than reduction of AlIII), represents the first O-ligated aluminyl compound and is shown to be capable of hitherto unprecedented reversible single-site [4 + 1] cycloaddition of benzene. This chemistry and the unusual regioselectivity of the related cycloaddition of anthracene are shown to be highly dependent on the availability (or otherwise) of the K+ countercation.

2.
Nature ; 560(7717): E24, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29867161

RESUMEN

In Fig. 1 of this Letter, the hydrogen (H) atoms attached to each of the two nitrogen (N) atoms in the chemical structure of (NON)H2 were inadvertently missing. The original figure has been corrected online.

3.
Nature ; 557(7703): 92-95, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29662211

RESUMEN

The reactivity of aluminium compounds is dominated by their electron deficiency and consequent electrophilicity; these compounds are archetypal Lewis acids (electron-pair acceptors). The main industrial roles of aluminium, and classical methods of synthesizing aluminium-element bonds (for example, hydroalumination and metathesis), draw on the electron deficiency of species of the type AlR3 and AlCl31,2. Whereas aluminates, [AlR4]-, are well known, the idea of reversing polarity and using an aluminium reagent as the nucleophilic partner in bond-forming substitution reactions is unprecedented, owing to the fact that low-valent aluminium anions analogous to nitrogen-, carbon- and boron-centred reagents of the types [NX2]-, [CX3]- and [BX2]- are unknown3-5. Aluminium compounds in the +1 oxidation state are known, but are thermodynamically unstable with respect to disproportionation. Compounds of this type are typically oligomeric6-8, although monomeric systems that possess a metal-centred lone pair, such as Al(Nacnac)Dipp (where (Nacnac)Dipp = (NDippCR)2CH and R = t Bu, Me; Dipp = 2,6- i Pr2C6H3), have also been reported9,10. Coordination of these species, and also of (η5-C5Me5)Al, to a range of Lewis acids has been observed11-13, but their primary mode of reactivity involves facile oxidative addition to generate Al(III) species6-8,14-16. Here we report the synthesis, structure and reaction chemistry of an anionic aluminium(I) nucleophile, the dimethylxanthene-stabilized potassium aluminyl [K{Al(NON)}]2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene). This species displays unprecedented reactivity in the formation of aluminium-element covalent bonds and in the C-H oxidative addition of benzene, suggesting that it could find further use in both metal-carbon and metal-metal bond-forming reactions.

4.
Angew Chem Int Ed Engl ; : e202406440, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818696

RESUMEN

Xanthene-backbone FLPs featuring secondary borane functions -B(ArX)H (where ArX = C6F5 (ArF) or C6Cl5 (ArCl)) have been targeted through reactions of the dihydroboranes Me2S·BArXH2 with [4,5-xanth(PR2)Li]2 (R = Ph, iPr), and investigated in the synthesis of related cationic systems via hydride abstraction. The reactivity of these systems (both cationic and charge neutral) with ammonia have been probed, with a view to probing the potential for proton shuttling via N-H bond 'activation.' We find that in the case of four-coordinate boron systems (cationic or change neutral), the N-H linkage remains intact, supported by a NH···P hydrogen bond which is worth up to 17 kcal mol-1 thermodynamically, and enabled by planarization of the flexible xanthene scaffold. For cationic three coordinate systems, N-to-P proton transfer is viable, driven by the ability of the boron centre to stabilise the [NH2]- conjugate base through N-to-B p bonding. This proton transfer can be shown to be reversible in the presence of excess ammonia, depending on the nature of the B-bound ArX group. It is viable in the case of C6F5 substituents, but is prevented by the more sterically encumbering and secondary donor-stabilising capabilities of the C6Cl5 substituent.

5.
Angew Chem Int Ed Engl ; 63(20): e202402795, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38465783

RESUMEN

While the nucleophilic addition of ammonia to ketones is an archetypal reaction in classical organic chemistry, the reactivity of heavier group 14 carbonyl analogues (R2E=O; E=Si, Ge, Sn, or Pb) with NH3 remains sparsely investigated, primarily due to the synthetic difficulties in accessing heavier ketone congeners. Herein, we present a room-temperature stable boryl-substituted amidinato-silanone {(HCDippN)2B}{PhC(tBuN)2}Si=O (Dipp=2,6-iPr2C6H3) (together with its germanone analogue), formed from the corresponding silylene under a N2O atmosphere. This system reacts cleanly with ammonia in 1,2-fashion to give an isolable sila-hemiaminal complex {(HCDippN)2B}{PhC(tBuN)2}Si(OH)(NH2). Quantum chemical calculations reveal that the formation of this sila-hemiaminal is crucially dependent on the nature of the ancillary ligand scaffold. It is facilitated thermodynamically by the hemi-lability of the amidinate ligand (which allows for the formation of an energetically critical intramolecular N⋅⋅⋅HO hydrogen bond within the product) and is enabled mech-anistically by a process in which the silanone initially acts in umpolung fashion as a base (rather than an acid), due to the strongly electron-releasing and sterically bulky nature of the ancillary boryl ligand.

6.
Angew Chem Int Ed Engl ; 63(23): e202404527, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38545953

RESUMEN

Bimetallic compounds containing direct metal-group 13 element bonds have been shown to display unprecedented patterns of cooperative reactivity towards small molecules, which can be influenced by the identity of the group 13 element. In this context, we present here a systematic appraisal of group 13 metallo-ligands of the type [(NON)E]- (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) for E=Al, Ga and In, through a comparison of structural and spectroscopic parameters associated with the trans L or X ligands in linear d10 complexes of the types LM{E(NON)} and XM'{E(NON)}. These studies are facilitated by convenient syntheses (from the In(I) precursor, InCp) of the potassium indyl species [{K(NON)In}⋅KCp]n (1) and [(18-crown-6)2K2Cp] [(NON)In] (1'), and lead to the first structural characterisation of Ag-In and Hg-E (E=Al, In) covalent bonds. The resulting structural, spectroscopic and quantum chemical probes of Ag/Hg complexes are consistent with markedly stronger σ-donor capabilities of the aluminyl ligand, [(NON)Al]-, over its gallium and indium counterparts.

7.
Angew Chem Int Ed Engl ; 63(22): e202405053, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536728

RESUMEN

The homoleptic magnesium bis(aluminyl) compound Mg[Al(NON)]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) can be accessed from K2[Al(NON)]2 and MgI2 and shown to possess a non-linear geometry (∠Al-Mg-Al=164.8(1)°) primarily due to the influence of dispersion interactions. This compound acts a four-electron reservoir in the reductive de-fluorination of SF6, and reacts thermally with polar substrates such as MeI via nucleophilic attack through aluminium, consistent with the QT-AIM charges calculated for the metal centres, and a formal description as a Al(I)-Mg(II)-Al(I) trimetallic. On the other hand, under photolytic activation, the reaction with 1,5-cyclooctadiene leads to the stereo-selective generation of transannular cycloaddition products consistent with radical based chemistry, emphasizing the covalent nature of the Mg-Al bonds and a description as a Al(II)-Mg(0)-Al(II) synthon. Consistently, photolysis of Mg[Al(NON)]2 in hexane in the absence of COD generates [Al(NON)]2 together with magnesium metal.

8.
Angew Chem Int Ed Engl ; : e202407427, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775385

RESUMEN

By exploiting the electronic capabilities of the N-heterocyclic boryloxy (NHBO) ligand, we have synthesized "naked" acyclic gallyl [Ga{OB(NDippCH)2}2]- and indyl [In{OB(NDippCH)2}2]- anions (as their [K(2.2.2-crypt)]+ salts) through K+ abstraction from [KGa{OB(NDippCH)2}2] and [KIn{OB(NDippCH)2}2] using 2.2.2-crypt. These systems represent the first O-ligated gallyl/indyl systems, are ultimately accessed from cyclopentadienyl GaI/InI precursors by substitution chemistry, and display nucleophilic reactivity which is strongly influenced by the presence (or otherwise) of the K+ counterion.

9.
J Am Chem Soc ; 145(8): 4408-4413, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36786728

RESUMEN

The reactions of anionic aluminium or gallium nucleophiles {K[E(NON)]}2 (E = Al, 1; Ga, 2; NON = 4,5-bis(2,6-diisopropylanilido)-2,7-ditert-butyl-9,9-dimethylxanthene) with beryllocene (BeCp2) led to the displacement of one cyclopentadienyl ligand at beryllium and the formation of compounds containing Be-Al or Be-Ga bonds (NON)EBeCp (E = Al, 3; Ga, 4). The Be-Al bond in the beryllium-aluminyl complex [2.310(4) Å] is much shorter than that found in the small number of previous examples [2.368(2) to 2.432(6) Å], and quantum chemical calculations suggest the existence of a non-nuclear attractor (NNA) for the Be-Al interaction. This represents the first example of a NNA for a heteroatomic interaction in an isolated molecular complex. As a result of this unusual electronic structure and the similarity in the Pauling electronegativities of beryllium and aluminium, the charge at the beryllium center (+1.39) in 3 is calculated to be less positive than that of the aluminium center (+1.88). This calculated charge distribution suggests the possibility for nucleophilic behavior at beryllium and correlates with the observed reactivity of the beryllium-aluminyl complex with N,N'-diisopropylcarbodiimide─the electrophilic carbon center of the carbodiimide undergoes nucleophilic attack by beryllium, thereby yielding a beryllium-diaminocarbene complex.

10.
Chemistry ; 29(66): e202302512, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37604785

RESUMEN

Terminal aluminium and gallium imides of the type K[(NON)M(NR)], bearing heteroatom substituents at R, have been synthesised via reactions of anionic aluminium(I) and gallium(I) reagents with silyl and boryl azides (NON=4,5-bis(2,6-diisopropyl-anilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene). These systems vary significantly in their lability in solution: the N(Sii Pr3 ) and N(Boryl) complexes are very labile, on account of the high basicity at nitrogen. Phenylsilylimido derivatives provide greater stabilization through the π-acceptor capabilities of the SiR3 group. K[(NON)AlN(Sit BuPh2 )] offers a workable compromise between stability and solubility, and has been completely characterized by spectroscopic, analytical and crystallographic methods. The silylimide species examined feature minimal π-bonding between the imide ligand and aluminium/gallium, with the HOMO and HOMO-1 orbitals effectively comprising orthogonal lone pairs centred at N. Reactivity-wise, both aluminium and gallium silylimides can act as viable sources of nitride, [N]3- , with systems derived from either metal reacting with CO to afford cyanide complexes. By contrast, only the gallium system K[(NON)Ga{N(SiPh3 )}] is capable of effecting a similar transformation with N2 O to yield azide, N3 - , via formal oxide/nitride metathesis. The aluminium systems instead generate RN3 via transfer of the imide fragment [RN]2- .

11.
Chemistry ; 29(20): e202300018, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36602941

RESUMEN

The reactions of a terminal aluminium imide with a range of oxygen-containing substrates have been probed with a view to developing its use as a novel main group transfer agent for the [NR]2- fragment. We demonstrate transfer of the imide moiety to [N2 ], [CO] and [Ph(H)C] units driven thermodynamically by Al-O bond formation. N2 O reacts rapidly to generate the organoazide DippN3 (Dipp=2,6-i Pr2 C6 H3 ), while CO2 (under dilute reaction conditions) yields the corresponding isocyanate, DippNCO. Mechanistic studies, using both experimental and quantum chemical techniques, identify a carbamate complex K2 [(NON)Al-{κ2 -(N,O)-N(Dipp)CO2 }]2 (formed via [2+2] cycloaddition) as an intermediate in the formation of DippNCO, and also in an alternative reaction leading to the generation of the amino-dicarboxylate complex K2 [(NON)Al{κ2 -(O,O')-(O2 C)2 N-(Dipp)}] (via the take-up of a second equivalent of CO2 ). In the case of benzaldehyde, a similar [2+2] cycloaddition process generates the metallacyclic hemi-aminal complex, Kn [(NON)Al{κ2 -(N,O)-(N(Dipp)C(Ph)(H)O}]n . Extrusion of the imine, PhC(H)NDipp, via cyclo-reversion is disfavoured thermally, due to the high energy of the putative aluminium oxide co-product, K2 [(NON)Al(O)]2 . However, addition of CO2 allows the imine to be released, driven by the formation of the thermodynamically more stable aluminium carbonate co-product, K2 [(NON)Al(κ2 -(O,O')-CO3 )]2 .

12.
Chemistry ; 29(20): e202300006, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36594576

RESUMEN

The reduction of the boryl-substituted SnII bromide {(HCDippN)2 B}Sn(IPrMe)Br with 1.5 equivalents of potassium graphite leads to the generation of the cyclic tetratin tetraboryl system K2 [Sn4 {B(NDippCH)2 }4 ], a homo-metallic heavier analogue of the cyclobutadiene dianion. This system is non-aromatic as determined by Nucleus Independent Chemical Shift Calculations (NICS(0)=-0.28, NICS(1)=-3.17), with the primary contributing resonance structures shown by Natural Resonance Theory (NRT) to involve a Sn=Sn double bond and 1,2-localized negative charges. Abstraction of the K+ cations or oxidation leads to contraction or cleavage of the Sn4 unit, respectively, while protonation generates the neutral dihydride 1,2-Sn4 {B(NDippCH)2 }4 H2 (a heavier homologue of cyclobutene) in a manner consistent with the predicted charge distribution in the [Sn4 {B(NDippCH)2 }4 ]2- dianion.

13.
Chemistry ; 29(10): e202203395, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36399407

RESUMEN

Boryltin compounds featuring the metal in the+1 or 0 oxidation states can be synthesized from the carbene-stabilized tin(II) bromide (boryl)Sn(NHC)Br (boryl={B(NDippCH)2 }; NHC=C{(Ni PrCMe)2 }) by the use of strong reducing agents. The formation of the mono-carbene stabilized distannyne and donor-free distannide systems (boryl)SnSn(IPrMe)(boryl) (2) and K2 [Sn2 (boryl)2 ] (3), using Mg(I) and K reducing agents mirrors related germanium chemistry. In contrast to their lighter congeners, however, systems of the type [Sn(boryl)]n are unstable with respect to disproportionation. Carbene abstraction from 2 using BPh3 , and two-electron oxidation of 3 both result in the formation of a 2 : 1 mixture of the Sn(II) compound Sn(boryl)2 , and the hexatin cluster, Sn6 (boryl)4 (4). A viable mechanism for this rearrangement is shown by quantum chemical studies to involve a vinylidene intermediate (analogous to the isolable germanium compound, (boryl)2 Ge=Ge), which undergoes facile atom transfer to generate Sn(boryl)2 and trinuclear [Sn3 (boryl)2 ]. The latter then dimerizes to give the observed hexametallic product 4, with independent studies showing that similar trigermanium species aggregate in analogous fashion.

14.
Chem Rev ; 121(20): 12784-12965, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34450005

RESUMEN

This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.


Asunto(s)
Metales , Catálisis
15.
J Am Chem Soc ; 144(20): 8908-8913, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35536684

RESUMEN

The reaction of amido-substituted stannylenes with phospha-Wittig reagents (Me3PPR) results in release of hexamethyldisilazane and tethering of the resulting -CH2PMe2PR fragment to the tin center to give P-donor stabilized stannylenes featuring four-membered Sn,C,P,P heterocycles. Through systematic increases in steric loading, the structures of these systems in the solid state can be tuned, leading to successive P-P bond lengthening and Sn-P contraction and, in the most encumbered case, to complete P-to-Sn transfer of the phosphinidene fragment. The resulting stannaphosphene features a polar Sn═P double bond as determined by structural and computational studies. The reversibility of phosphinidene transfer can be established by solution phase measurements and reactivity studies.

16.
J Am Chem Soc ; 144(28): 12942-12953, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35786888

RESUMEN

Homologation of carbon monoxide is central to the heterogeneous Fischer-Tropsch process for the production of hydrocarbon fuels. C-C bond formation has been modeled by homogeneous systems, with [CnOn]2- fragments (n = 2-6) formed by two-electron reduction being commonly encountered. Here, we show that four- or six-electron reduction of CO can be accomplished by the use of anionic aluminum(I) ("aluminyl") compounds to give both topologically linear and branched C4/C6 chains. We show that the mechanism for homologation relies on the highly electron-rich nature of the aluminyl reagent and on an unusual mode of interaction of the CO molecule, which behaves primarily as a Z-type ligand in initial adduct formation. The formation of [C6O6]4- from [C4O4]4- shows for the first time a solution-phase CO homologation process that brings about chain branching via complete C-O bond cleavage, while a comparison of the linear [C4O4]4- system with the [C4O4]6- congener formed under more reducing conditions models the net conversion of C-O bonds to C-C bonds in the presence of additional reductants.


Asunto(s)
Monóxido de Carbono , Hidrocarburos , Monóxido de Carbono/química , Electrones , Hidrocarburos/química , Isomerismo , Ligandos
17.
Angew Chem Int Ed Engl ; 61(17): e202117496, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35143702

RESUMEN

We report on the reversible uptake of carbon dioxide by dimetallynes featuring ancillary hemi-labile pincer ligands. Insertion into the Ge-Ge/Sn-Sn bonds yields species containing an E(CO2 )E unit, with the mode of ligation of the CO2 fragment determined crystallographically being found to be dependent on the identity of the Group 14 element. The thermodynamics of CO2 uptake/loss can be established through VT NMR (ΔH°=+24.6(2.3) kJ mol-1 , ΔS°=+64.9(3.8) J mol-1 K-1 , ΔG°298 =+5.3(1.9) kJ mol-1 for the loss of CO2 in the Ge case), and the chemical consequences of reversibility demonstrated by thermodynamically-controlled exchange reactions.

18.
Angew Chem Int Ed Engl ; 61(5): e202114926, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34811868

RESUMEN

We report on the synthesis of a distannyne supported by a pincer ligand bearing pendant amine donors that is capable of reversibly activating E-H bonds at one or both of the tin centres through dissociation of the hemi-labile N-Sn donor/acceptor interactions. This chemistry can be exploited to sequentially (and reversibly) assemble mixed-valence chains of tin atoms of the type ArSn{Sn(Ar)H}n SnAr (n=1, 2). The experimentally observed (decreasing) propensity towards chain growth with increasing chain length can be rationalized both thermodynamically and kinetically by the electron- withdrawing properties of the -Sn(Ar)H- backbone units generated via oxidative addition.

19.
Angew Chem Int Ed Engl ; 61(48): e202211616, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36161749

RESUMEN

A systematic study to access stable stannaimines is reported, by combining different heteroleptic stannylenes with a range of organic azides. The reactions of terphenyl-/hypersilyl-substituted stannylenes yield the putative tin nitrogen double bond, but is directly followed by 1,2-silyl migration to give SnII systems featuring bulky silylamido ligands. By contrast, the transition from a two σ donor ligand set to a mixed σ-donor/π-donor scaffold allows access to three new stannaimines which can be handled at room temperature. The reactivity profile of these Sn=N bonded species is crucially dependent on the substituent at the nitrogen atom. As such, the Sn=NMes (Mes=2,4,6-Me3 C6 H2 ) system is capable of activating a broad range of substrates under ambient conditions via 1,2-addition reactions, [2+2] and [4+2] cycloaddition reactions. Most interestingly, very rare examples of main group multiple bond metathesis reactions are also found to be viable.

20.
Chemistry ; 27(9): 3159-3165, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33200850

RESUMEN

The synthesis of a novel mono-anionic phosphino-amide ligand based on a xanthene backbone is reported, togetherr with the corresponding GaI complex, (PON)Ga (PON = 4-(di(2,4,6-trimethylphenyl)phosphino)-5-(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene). The solid-state structure of (PON)Ga (obtained from X-ray crystallography) reveals very weak O⋅⋅⋅Ga and P⋅⋅⋅Ga interactions, consistent with a R2 NGa fragment which closely resembles those found in one-coordinate amidogallium systems. Strong N-to-Ga π donation from the amido substituent is reflected in a very short N-Ga distance (1.961(2) Å), while the P⋅⋅⋅Ga contact (3.076(1) Å) is well outside the sum of the respective covalent radii. While the donor properties of the PON ligand towards GaI are highly unsymmetrical, oxidation to GaIII leads to much stronger coordination of the pendant phosphine as shown by P-Ga distances which are up to 20 % shorter. From a steric perspective, the PON ligand is shown to be significantly bulkier than related ß-diketiminate systems, a finding consistent with reactions of (PON)Ga towards O-atom sources that proceed without oligomerization. Despite this, the enhanced P-donor properties brought about by oxidation at gallium are not sufficient to quench the reactivity of the highly polar Ga-O unit. Instead, intramolecular benzylic C-H activation is observed across the Ga-O bond of a transient gallanone intermediate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA