Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615314

RESUMEN

Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcriptional elongation, through which short-lived antiapoptotic proteins are overexpressed and make cancer cells resistant to apoptosis. Therefore, CDK9 inhibition depletes antiapoptotic proteins, which in turn leads to the reinstatement of apoptosis in cancer cells. Twenty-seven compounds were synthesized, and their CDK9 inhibitory and cytotoxic activities were evaluated. Compounds 7, 9, and 25 were the most potent CDK9 inhibitors, with IC50 values of 0.115, 0.131, and 0.142 µM, respectively. The binding modes of these molecules were studied via molecular docking, which shows that they occupy the adenosine triphosphate binding site of CDK9. Of these three molecules, compound 25 shows good drug-like properties, as it does not violate Lipinski's rule of five. In addition, this molecule shows promising ligand and lipophilic efficiency values and is an ideal candidate for further optimization.


Asunto(s)
Antineoplásicos , Quinasa 9 Dependiente de la Ciclina , Simulación del Acoplamiento Molecular , Quinazolinonas/farmacología , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Antineoplásicos/química
2.
Saudi Pharm J ; 30(7): 946-953, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35903530

RESUMEN

Recently, the focus has been shifting toward Quorum sensing inhibitors which reduce Pseudomonas aeruginosa virulence factors, alleviating infections. In this work, me-ta-bromo-thiolactone (mBTL), a potent quorum and virulence inhibitor for the Pseudomonas aeruginosa strains, were formulated in calcium alginate nanoparticles (CANPs). Alginate is used as nutrients and as backbone virulence aspect for Pseudomonas and therefore was chosen. mBTL-loaded-CANPs were characterized for particle size, polydispersity index, zeta potential, morphology visualized by Transmission Electron Microscopy (TEM) and drug release profile. Chemical and physical analysis of formulated mBTL-loaded-CANPs were evaluated using Fourier transform infrared Spectroscopy (FTIR) and differential scanning calorimetry (DSC) and Physical stability of mBTL-loaded-CANPs assessed at various temperature 25 ± 1 °C, 4 ± 0.5 °C and -30° ± 1 °C over a period of 4 and 9 months. Synthesized CANPs showed nano-size particles ranging from 140 to 200 nm with spherical particles for plain CANPS and irregular shape for mBTL-loaded-CANPs with a sustainable release profile over 48hrs. FTIR showed stable structure of loaded-mBTL and DSC displayed no interaction between mBTL and polymer. State of released mBTL from CANPs kept at 25 °C, 4 °C and -30 °C over 4 and 9 months showed stable formula at room temperature which kept as a goal of nanoparticles storage. The findings of this study revealed successful preparation of mBTL-loaded-CANPs.

3.
Drug Dev Ind Pharm ; 47(12): 1935-1942, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35537065

RESUMEN

Surfactant-stabilized mucoadhesive nanogels (NGs) for vaginal delivery of fluconazole (FLZ) were studied and evaluated in this work. FLZ-NG formulations were prepared using two different types of mucoadhesive polymers, Carbopol 934 (Ca934) and Pluronic F-127 (PF127). A rheology study revealed a non-Newtonian pseudoplastic flow behavior (shear thinning) in the prepared NGs. The viscosity of Ca934 NG (0.47 Pa s) was much lower compared to the PF127 NG (6.10 Pa s). The rheology study results correlated well with the in vitro FLZ release profile from the NG formulations. A pH study (pH = 3.90-4.90) revealed that the formulations were physiologically suitable for vaginal application, to avoid the irritation of the vaginal mucosa. Finally, in vitro and in vivo antimicrobial tests were performed. FLZ incorporated into the Ca934 gel had the strongest antimicrobial effect, with a mean inhibition zone of 24 ± 1.6 mm. Based on these results, it was concluded that the mucoadhesive NG incorporating FLZ resulted in a sustained release and enhanced antimicrobial effect, which would enhance and prolong the therapeutic effects of vaginally delivered FLZ.


Asunto(s)
Fluconazol , Tensoactivos , Antifúngicos/farmacología , Parto Obstétrico , Excipientes , Femenino , Fluconazol/farmacología , Geles , Humanos , Nanogeles , Poloxámero , Embarazo
4.
Saudi Pharm J ; 29(5): 446-455, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34135670

RESUMEN

Nowadays, microRNA is considered an attractive strategy for the effective treatment of cancer. A significant delivery of microRNA for cancer therapy remains a significant obstacle to target cancer cells. The restoring microRNA-1296 (miR-1296) has immense therapeutic efficacy in triple-negative breast cancer (TNBC). TNBC is an aggressive subtype of breast tumors with the progression of malignant transformation. This study aimed to develop a cationic nanoliposome that can serve as a miR-1296 carrier and studied its efficiency in TNBC. The efficacy of miR-1296 liposomes was evaluated on its apoptotic effect, cellular uptake, and potential chemotherapy sensitization in the TNBC cell line (MDA-MB-231). For in vitro viability study, the apoptotic effect was performed to validate protein expression using Alamar blue kit and western blot. The transfection of miR-1296 into TNBC cells was also investigated using cisplatin as a TNBC resistance drug. The fluorescent miR-1296-cy3 liposome was used for cellular uptake study. The miR-liposome was successfully prepared with a particle size of 123.6 ± 1.3 nm and encapsulation efficiency of 94.33%. A dose of 0.5 uM has significantly reduced the viability of MDA-MB-231 to be 33.45%±5.29 (P < 0.001). This result was validated by down-expression of CCND1, and PARP1, the miR-1296 receptor, and apoptosis marker. The image of the miR-1296-cy3 liposome showed cytoplasmic intracellular localization. It was found high sensitization of TNBC cell line for miR-1296 liposome compared to cisplatin (P < 0.001). Future in vivo research may answer questions concerning safety and stability. This study demonstrates that miR-191 liposomes may have promising clinical applications for TNBC therapy.

5.
Saudi Pharm J ; 28(2): 196-200, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32042258

RESUMEN

Outer membrane porin F (OprF) is a major structural membrane protein of Pseudomonas aeruginosa, a recognised human opportunistic pathogen which is correlated with severe hospital-acquired infections. This study investigating a multiphenotypic approach, based on the comparative study of a wild type strain of P. aeruginosa, its isogenic OprF mutant. Both P. aeruginosa PAO1 and OprF mutant strains were grown in same condition and cultures were subjected to further analysis by SDS PAGE, pyocyanin production and biofilm formation that was analyse using scanning electron microscopy. Based on biofilm formation essay and pyocyanin production, the study showed that OprF plays a dynamic role in P. aeruginosa virulence. The absence of OprF results in slow growth rate corresponded to elongated lag phase and reduced biofilm production also a significance reduction in the production of the quorum-sensing-dependent virulence factors pyocyanin. Accordingly, in the OprF mutant scanning electron microscope "SEM" images showed impaired cellular niche and detached cells when compared to regular attached P. aeruginosa wild type cells in the niche. Taken together, this study shows the contribution of OprF in P. aeruginosa virulence, at least partly through impairment of biofilm, cell to cell attachment in niche and pyocyanin production. This study show a vital link between OprF and virulence factor production, providing novel insights for its role in pathogenicity and future could provide the basis for the development of novel drug targets for antibiotics and vaccines.

6.
Saudi Pharm J ; 27(1): 82-87, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30662310

RESUMEN

Emerging antibiotic resistance necessitates the development of new therapeutic approaches. Many studies have reported the antimicrobial activity of diclofenac sodium (DIC) and chitosan nanoparticles (CNPs). Hence, this study aimed to prepare non-antibiotic DIC-loaded CNPs (DIC.CNPs) and characterize their in vitro antibacterial activity. DIC.CNPs were prepared from low and high molecular weight (LMW and HMW, respectively) chitosan using an ionic gelation method. Prepared NPs were characterized, and their antibacterial activity against gram-positive Staphylococcus aureus and Bacillus subtilis was evaluated using the agar diffusion and broth dilution methods. The particle size, polydispersity index (PDI), and encapsulation efficiency of the formulated DIC.CNPs increased with increasing MW of chitosan. The prepared NPs showed a narrow size distribution with low PDI values (0.18 and 0.24) and encapsulation efficiency (29.3% and 31.1%) for LMW.DIC.CNPs and HMW.DIC.CNPs, respectively. The in vitro release profile of DIC from the DIC.CNPs was biphasic with a burst release followed by slow release and was influenced by the MW of chitosan. DIC.CNPs exhibited significantly higher antibacterial activity against S. aureus (minimum inhibitory concentration [MIC90] LMW.DIC.CNPs = 35 µg/mL and MIC90 HMW.DIC.CNPs = 18 µg/mL) and B. subtilis (MIC90 LMW.DIC.CNPs = 17.5 µg/mL and MIC90 HMW.DIC.CNPs = 9 µg/mL) than DIC alone did (MIC90 DIC = 250 and 50 µg/mL against S. aureus and B. subtilis, respectively). The antibacterial activity was influenced by pH and the MW of chitosan. Collectively, these results may suggest the potential usefulness of DIC.CNPs as non-antibiotic antibacterial agent necessitating further future studies to asses the stability of DIC.CNPs prepared.

7.
Saudi Pharm J ; 27(5): 682-693, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31297023

RESUMEN

A new series of 5,5-diphenylhydantoin derivatives containing benzylidene or isatin (4-19) was synthesized. Their anticancer activity against HeLa, a cervical cancer cell line, A549, a lung cancer cell line, and MDA-MB-231, a breast cancer cell line, was evaluated. Compounds 13, 16, 17 and 18 exhibited potent anticancer activity with average IC50 values against the tested cell lines of 109, 59, 81 and 113 µM, respectively. Compound 16 showed potent EGFR and VEGFR2 inhibitory activity with IC50 values of 6.17 and 0.09 µM, respectively. In addition, compound 16 induced caspase-dependent apoptosis and reactive oxygen species (ROS) production at 5 and 10 µM. Moreover, a molecular docking simulation was performed for compound 16 and sunitinib to predict the protein-ligand interactions with the active site of VEGFR2.

8.
Saudi Pharm J ; 26(1): 79-83, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29379337

RESUMEN

OBJECTIVE: The purpose of this study was to study the antimicrobial activity of chitosan nanoparticles (CSNPs) on Pseudomonas aeruginosa with special emphasis on their sensitivity to pH and the effect of pH on their activity. METHODOLOGY: Antimicrobial activity of CSNPs against Pseudomonas aeruginosa at different pH was tested using broth dilution method. Further assessment of antivirulence activity and sensitization of CSNPs on Pseudomonas aeruginosa were examined. RESULTS: Significant antimicrobial effects of CSNPs against Pseudomonas aeruginosa were detected at slightly acidic pH 5, whereas the activity was abolished at a pH of greater than 7. The antivirulence activity of CSNPs was then investigated and treatment with CSNPs (1000 ppm) resulted in a significant reduction or even complete inhibition of pyocyanin production by P. aeruginosa compared with untreated P. aeruginosa indicating the antivirulence activity of CSNPs. CSNPs also sensitized P. aeruginosa to the lytic effects of sodium dodecyl sulfate (SDS); such sensitization was not blocked by washing chitosan-treated cells prior to SDS exposure revealing that CSNPs disturb the outer membrane leading to irreversible sensitivity to detergent even at low concentration (100 ppm). CONCLUSIONS: These findings highlight CSNPs as potentially useful as indirect antimicrobial agents for a variety of applications.

9.
BMC Infect Dis ; 17(1): 23, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28056850

RESUMEN

BACKGROUND: The Middle East respiratory syndrome (MERS) is proposed to be a zoonotic disease. Dromedary camels have been implicated due to reports that some confirmed cases were exposed to camels. Risk factors for MERS coronavirus (MERS-CoV) infections in humans are incompletely understood. This study aimed to describe the demographic characteristics, mortality rate, clinical manifestations and comorbidities with confirmed cases of MERS-CoV. METHODS: Retrospective chart review were performed to identify all laboratory-confirmed cases of MERS-CoV in Saudi Arabia who reported to the Ministry of Health (MOH) of Saudi Arabia and WHO between April 23, 2014 and August 31, 2015. Patients' charts were also reviewed for demographic information, mortality, comorbidities, clinical presentations, health care facility and presented with descriptive and comparative statistics using non parametric binomial test and Chi-square test. RESULTS: Confirmed cases of male patients (61.1%) exceeded those of female patients (38.9%). Infections among Saudi patients (62.6%) exceeded those among non-Saudi patients (37.4%; P = 0.001). The majority of the patients were aged 21-40 years (37.4%) or 41-60 years (35.8%); 43 (22.6%) were aged >61 years, and (8) 4.2% were aged 0-20 years. There was a difference in mortality between confirmed MERS-CoV cases (63.7% alive versus 36.3% dead cases, respectively). Furthermore, fever with cough and shortness of breath (SOB) (n = 39; 20.5%), fever with cough (n = 29; 15.3%), fever (n = 18; 9.5%), and fever with SOB (n = 13; 6.8%), were the most common clinical manifestations associated with confirmed MERS-CoV cases. CONCLUSION: MERS-CoV is considered an epidemic in Saudi Arabia. The results of the present study showed that the frequency of cases is higher among men than women, in Saudi patients than non-Saudi, and those between 21 to 60 years are most affected. Further studies are required to improve the surveillance associated with MERS-CoV to get definite and clear answers and better understanding of the MERS-CoV outbreak as well the source, and route of infection transmission in Saudi Arabia.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Adolescente , Adulto , Anciano , Animales , Camelus , Niño , Preescolar , Comorbilidad , Infecciones por Coronavirus/etiología , Infecciones por Coronavirus/mortalidad , Brotes de Enfermedades , Femenino , Fiebre/epidemiología , Fiebre/etiología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Estudios Retrospectivos , Factores de Riesgo , Arabia Saudita/epidemiología , Adulto Joven
10.
Saudi Pharm J ; 23(2): 167-76, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25972737

RESUMEN

The needs for safe, therapeutically effective antidiarrheal combination continuously lead to effective treatment. When administered simultaneously, metronidazole-kaolin interactions have been reported by FDA but not studied. This paper is the first to study metronidazole-kaolin interactions. Adsorption isotherms of a metronidazole-kaolin antidiarrheal combination from aqueous solutions at an in vivo simulated pH conditions were obtained at 37 ± 0.5 °C. Langmuir constants for the adsorption are 10.8225, 41.3223 mg g(-1) and 11.60, 2.56 l g(-1) aimed at the monolayer capacity, and the equilibrium constant at pH 1.2 and 6.8, respectively. pH effect on adsorption of known concentration of metronidazole by kaolin was also studied over the range 1.2-8. A gradual increase in the adsorbed amount was noted with increasing the pH. Elution studies by different eluents showed that drug recovery from adsorbent surface was pH-dependent via competitive mechanism. The elution followed the sequence: 0.1 M HCl > 0.1 M NaCl > H2O. Adsorption-desorption studies revealed physical adsorption. The equilibrium concentration of metronidazole decreased as the adsorbent concentration was increased in the systems. The dissolution profiles (USP) of commercially available tablets (Riazole® 500 mg) were obtained alone and in the presence of either (ORS®) rehydration salts and 9 or 18 g of kaolin powder. The percentage drug released versus time: 95.01% in 25 min, 101.02% in 30 min, 67.63% in 60 min, 60.59% in 60 min, respectively. The percentage drug released versus time was increased with ORS® due to common ion effect [Cl(-)], while, it was decreased with kaolin due to adsorption. The mechanism of reaction of Riazole® (500 mg) tablets in the different dissolution media, confirms with Korsmeyer-Peppas model. The interaction between metronidazole and kaolin was characterized by melting point determinations, differential scanning calorimetry analysis and infrared spectroscopy. The results obtained were suggestive of physical interaction between metronidazole and kaolin.

11.
Int J Nanomedicine ; 19: 609-631, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38264736

RESUMEN

Introduction: The emergence of Neisseria gonorrhoeae-resistant strains represents one of the most urgent global threats. In this regard, C7-3 peptide is one of the anti-virulence therapies that has demonstrated promising anti-gonococcal activity. Accordingly, this research aimed to formulate C7-3 peptide and its derivatives in chitosan nanoparticles. Methods: The peptide loaded chitosan nanoparticles were prepared using ion gelation method, and their physicochemical characteristics were investigated. The anti-gonococcal and antibiofilm activity of prepared NPs was assessed, and their cytotoxicity in human ovarian cells was evaluated. Results: All prepared NPs were optimized for the smallest particle size of 136.9 to 168.3 nm. The EE% of C7-3, C7-3m1, and C7-3m2 CNPs reached 90.2, 92.5, and 91.8%, respectively. An in vitro release study demonstrated a continuous sustained-release pattern of C7-3 peptide from NPs. The SDS-PAGE assay confirmed the integrity of C7-3 peptide after the fabrication process. When comparing each peptide alone, the generated NPs demonstrated higher anti-gonococcal and anti-biofilm effectiveness against standard and resistant bacterial strains under anaerobic conditions. The cytotoxicity experiments revealed the cytocompatibility of NPs in HeLa cell lines. Given the advantages of enhanced anti-gonococcal activity of the C7-3 peptide and its derivatives when loaded with CNPs, as well as the antimicrobial properties of chitosan NPs, the reported NPs have great potential in the treatment of gonococcal infection.


Asunto(s)
Quitosano , Nanopartículas , Humanos , Neisseria gonorrhoeae , Células HeLa , Biopelículas
12.
J Biol Chem ; 287(23): 19048-57, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22493500

RESUMEN

The Tol assembly of proteins is an interacting network of proteins located in the Escherichia coli cell envelope that transduces energy and contributes to cell integrity. TolA is central to this network linking the inner and outer membranes by interactions with TolQ, TolR, TolB, and Pal. Group A colicins, such as ColA, parasitize the Tol network through interactions with TolA and/or TolB to facilitate translocation through the cell envelope to reach their cytotoxic site of action. We have determined the first structure of the C-terminal domain of TolA (TolAIII) bound to an N-terminal ColA polypeptide (TA(53-107)). The interface region of the TA(53-107)-TolAIII complex consists of polar contacts linking residues Arg-92 to Arg-96 of ColA with residues Leu-375-Pro-380 of TolA, which constitutes a ß-strand addition commonly seen in more promiscuous protein-protein contacts. The interface region also includes three cation-π interactions (Tyr-58-Lys-368, Tyr-90-Lys-379, Phe-94-Lys-396), which have not been observed in any other colicin-Tol protein complex. Mutagenesis of the interface residues of ColA or TolA revealed that the effect on the interaction was cumulative; single mutations of either partner had no effect on ColA activity, whereas mutations of three or more residues significantly reduced ColA activity. Mutagenesis of the aromatic ring component of the cation-π interacting residues showed Tyr-58 of ColA to be essential for the stability of complex formation. TA(53-107) binds on the opposite side of TolAIII to that used by g3p, ColN, or TolB, illustrating the flexible nature of TolA as a periplasmic hub protein.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Periplasma/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , Mutagénesis , Mutación Missense , Periplasma/genética , Unión Proteica , Estructura Secundaria de Proteína
13.
Medicine (Baltimore) ; 101(48): e31949, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36482609

RESUMEN

The coronavirus 2019 (COVID-19) pandemic has globally impacted all aspects of life since its emergence and spread. There is a strong biological assumption and progressing epidemiological data supporting the role of vitamin D (VD) in COVID-19 infection. This study aims to determine the knowledge about VD supplements to boost immunity against COVID-19 and if participation in specific behaviors has increased the consumption of VD supplements during social distance restriction in Saudi Arabia (SA) in May 2021. This cross-sectional study used a structured online questionnaire for 2369 SA people, including demographic characteristics and knowledge about VD supplements to boost immunity against COVID-19 showed that there was a significant association between sex and vitamin D deficiency (VDD) (P = .000), and having VDD was strongly associated with having another vitamin deficiency (P = .008). Additionally, there was a statistically significant difference between VDD and cardiovascular (P = .027) and respiratory diseases (P = .019). Almost half of the participants used VD supplements to reduce or heal their COVID-19 symptoms. The adverse association between having VDD and understanding of COVID-19 symptoms was statistically significant (P = .01). Ginger is commonly used as an alternative medicine for the treatment of VD. The administration of VD is now known to be of physiological significance for general health, and evidence suggesting the beneficial role of VD in the prevention and/or treatment of diseases, particularly infectious diseases, such as COVID-19, is increasing.


Asunto(s)
COVID-19 , Pandemias , Humanos , Vitamina D , Estudios Transversales , COVID-19/epidemiología , Arabia Saudita/epidemiología
14.
IJID Reg ; 3: 268-274, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35720150

RESUMEN

Objective: To evaluate the preparedness of Saudi healthcare facilities to handle the coronavirus disease 2019 (COVID-19) pandemic. Methods: Between April and June 2020, a cross-sectional study was conducted among Saudi hospitals using an online-administered English-language questionnaire by the Saudi Commission for Health Specialties. The questionnaire evaluates all aspects of risk management, infection control and preventative programmes that should be known and practised by all healthcare workers (HCWs). All HCWs in Saudi hospitals designated to accept patients with COVID-19 were involved in the study. Results: In total, 161 HCWs responded to the survey. General understanding of hospital risk management plans and infection prevention measures was found to be outstanding (80.4%), with no differences in responses by gender, education or occupation. Some differences in responses were found by age group and years of working experience. Most responses were from hospitals located in the Central Province (72.7%) and governmental hospitals (88%), and most provided family services (68%). Furthermore, the results showed that medical professionals received adequate training, which is recognized as the baseline for effective risk management and infection control and prevention procedures, policies and recommendations. Conclusions: Notwithstanding small differences between HCWs, this study found that all HCWs in Saudi hospitals had excellent knowledge of risk management plans and pandemic sub-plans of infection control and prevention policies, procedures and principles, which has aided the health authorities in Saudi Arabia in mitigating COVID-19 effectively.

15.
J Complement Integr Med ; 19(2): 383-388, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34022123

RESUMEN

OBJECTIVES: This study aimed to describe the development and implementation of a separated pathway to check and treat patients with a suspected/confirmed coronavirus disease 2019 (COVID-19) in the emergency department (ED) at King Abdullah bin Abdulaziz University Hospital in Riyadh. METHODS: We conducted a retrospective, descriptive longitudinal study from March to July 2020 by analyzing data of all confirmed cases of COVID-19 among ED visitors and healthcare workers in King Abdullah bin Abdulaziz University Hospital. RESULTS: During the study period, a total of 1,182 swab samples were collected for testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), of which 285 (24.1%) tested positive. Of the 285 cases of confirmed SARS-CoV-2 infection, 18 were healthcare workers and 267 were patients. As a result of using the respiratory pathway for COVID-19 patients, the hospital managed to limit transmission of SARS-CoV-2 not only between patients but also between patients and healthcare workers, while also containing the pandemic. There were no cases of nosocomial SARS-CoV-2 infection recorded among the patients who visited the ED or the flu clinic. All confirmed cases were community acquired and patients were cared for under constrained measures. CONCLUSIONS: Implementing infection control measures and restricting those with respiratory symptoms to the ED pathway prevented nosocomial spread of SARS-CoV-2 infection in the ED.


Asunto(s)
COVID-19 , Infección Hospitalaria , COVID-19/prevención & control , Infección Hospitalaria/prevención & control , Servicio de Urgencia en Hospital , Humanos , Estudios Longitudinales , Estudios Retrospectivos , SARS-CoV-2
16.
Antibiotics (Basel) ; 11(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36358133

RESUMEN

This study aims to assess the prevalence and antibiotic-treatment patterns of respiratory tract infections (RTIs), prevalence and types of antibiotic-prescribing errors, and the cost of inappropriate antibiotic use among emergency department (ED) patients. A cross-sectional study was conducted at the ED in King Abdulaziz Medical City, Riyadh, Saudi Arabia. Patient characteristics (age, sex, weight, allergies, diagnostic tests (CX-Ray), cultures, microorganism types, and prescription characteristics) were studied. During the study, 3185 cases were diagnosed with RTIs: adults (>15 years) 55% and pediatrics (<15 years) 44%. The overall prevalence of RTIs was 21%, differentiated by upper respiratory tract infections (URTI) and lower respiratory tract infections (LRTI) (URTI 13.4%; LRTI 8.4%), of total visits. Three main antibiotics (ATB) categories were prescribed in both age groups: penicillin (pediatrics 43%; adults 26%), cephalosporin (pediatrics 29%; adults 19%), and macrolide (pediatrics 26%; adults 38%). The prevalence of inappropriate ATB prescriptions was 53% (pediatrics 35%; adults 67%). Errors in ATB included selection (3.3%), dosage (22%), frequency (3%), and duration (32%). There is a compelling need to create antimicrobial stewardship (AMS) programs to improve antibiotic use due to the high number of prescriptions in the ED deemed as inappropriate. This will help to prevent unwanted consequences on the patients and the community associated with antibiotic use.

17.
Artif Cells Nanomed Biotechnol ; 50(1): 198-207, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35762105

RESUMEN

Recent evidence has implicated microRNA-219 (miR-219) in regulation of gene contributed in glioblastoma (GBM) pathogenesis. This study aimed to prepare miR-219 in chitosan (CS) nanoparticles (NPs), characterize and investigate their efficacy on human GBM cell line (U87 MG). NPs were prepared using ionic gelation method. The influence of process parameters on physicochemical characteristics of NPs was investigated. Apoptotic effect of miR-219 was examined on U87 MG cells. Formulated NPs showed particle size of 109 ± 2.18 nm, with poly dispersity index equal to 0.2 ± 0.05, and zeta potential of +20.5 ± 0.7 mV. Entrapment efficiency of miR-219 in loaded NP has reached 95%. The in vitro release study demonstrated sustained release pattern of miR-219 from CS-NPs. Gel retardation assay has confirmed the integrity of miR-219 after production process. The fabricated NPs reduced the survival of U87 MG cells to 78% after 24 h of post-transfection, and into 67.5% after 48 h. However, fibroblasts were not affected by the NPs, revealing their specificity for GBM cells. Given the tumour suppressing function of miR-219, and advantage of CS-NPs for gene delivery to the central nervous system, the presented NPs have a great potential for treatment of GBM.


Asunto(s)
Quitosano , Glioblastoma , MicroARNs , Nanopartículas , Quitosano/química , Portadores de Fármacos/química , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , MicroARNs/genética , MicroARNs/uso terapéutico , Nanopartículas/química
18.
Nanomaterials (Basel) ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35010119

RESUMEN

Colorectal cancer (CRC) is a serious disease that affects millions of people throughout the world, despite considerable advances in therapy. The formation of colorectal adenomas and invasive adenocarcinomas is the consequence of a succession of genetic and epigenetic changes in the normal colonic epithelium. Genetic and epigenetic processes associated with the onset, development, and metastasis of sporadic CRC have been studied in depth, resulting in identifying biomarkers that might be used to predict behaviour and prognosis beyond staging and influence therapeutic options. A novel biomarker, or a group of biomarkers, must be discovered in order to build an accurate and clinically useful test that may be used as an alternative to conventional methods for the early detection of CRC and to identify prospective new therapeutic intervention targets. To minimise the mortality burden of colorectal cancer, new screening methods with higher accuracy and nano-based diagnostic precision are needed. Cytotoxic medication has negative side effects and is restricted by medication resistance. One of the most promising cancer treatment techniques is the use of nano-based carrier system as a medication delivery mechanism. To deliver cytotoxic medicines, targeted nanoparticles might take advantage of differently expressed molecules on the surface of cancer cells. The use of different compounds as ligands on the surface of nanoparticles to interact with cancer cells, enabling the efficient delivery of antitumor medicines. Formulations based on nanoparticles might aid in early cancer diagnosis and help to overcome the limitations of traditional treatments, including low water solubility, nonspecific biodistribution, and restricted bioavailability. This article addresses about the molecular pathogenesis of CRC and highlights about biomarkers. It also provides conceptual knowledge of nanotechnology-based diagnostic techniques and therapeutic approaches for malignant colorectal cancer.

19.
Pharmaceutics ; 14(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35213977

RESUMEN

Choroidal neovascularization (CNV) is a major cause of visual impairment that results from excessive growth of blood vessels in the eye's choroid. The limited clinical efficacy of the current therapy for this condition requires the emergence of new treatment modalities such as microRNA (miRNAs). A recent study identified microRNA-539-5p (miR-539) as an angiogenic suppressor in a CNV animal model; however, its therapeutic delivery is limited. Therefore, this study aims to formulate miR-539 in targeted nanoparticles (NPs) prepared from polylactic-co-glycolic acid (PLGA). The NPs were decorated with internalizing arginylglycylaspartic (RGD) peptide (iRGD), which specifically targets the alpha-v-beta-3 (αvß3) integrin receptor that is overexpressed in blood vessels of ocular tissue in CNV patients. The 1H NMR spectra results revealed successful conjugation of iRGD peptide into PLGA NPs. The miR-539-PLGA.NPs and miR-539-iRGD-PLGA.NPs were prepared and showed a particle size of 300 ± 3 and 306.40 ± 4 nm, respectively. A reduction in human retinal microvascular endothelial cell (HRMEC) viability was shown 48 and 72 h post transfection with miR-539 incorporated in PLGA NPs and iRGD-PLGA.NPs. iRGD-functionalized PLGA NPs caused further significant reduction in cell viability when compared with plain ones, revealing an enhancement in the NP uptake with iRGD-grafted NPs. The current study showed that miR-539-PLGA.NPs and miR-539-iRGD-PLGA.NPs are promising approaches that reduced the viability of HRMECs, suggesting their therapeutic potential in the treatment of CNV.

20.
Polymers (Basel) ; 14(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36080730

RESUMEN

Pseudomonas aeruginosa contributes to many chronic infections and has been found to be resistant to multiple antibiotics. Pseudomonas use a quorum sensing system (QS) to control biofilm establishment and virulence factors, and, thus, quorum sensing inhibitors (QSIs), such as meta-bromo-thiolactone (mBTL), are promising anti-infective agents. Accordingly, this study intended to investigate the antibacterial and anti-virulence activity of mBTL-loaded calcium alginate nanoparticles (CANPs) against Pseudomonas aeruginosa and different QS mutants. The results show that the mBTL-CANPs had higher antibacterial activity, which was made evident by decreases in all tested strains except the ∆lasR/∆rhlR double mutant, with MIC50 (0.5 mg/mL) of mBTL-CANPs compared with free mBTL at MIC50 (˃1 mg/mL). The biofilm formation of P. aeruginosa and some QS-deficient mutants were reduced in response to 0.5-0.125 mg/mL of mBTL-encapsulating CANPs. The pyocyanin production of the tested strains except ∆lasA and ∆rhlR decreased when challenged with 0.5 mg/mL of mBTL-loaded NPs. The subsequent characterization of the cytotoxic effect of these NPs on human lung epithelial cells (A549) and cystic fibrosis fibroblast cells (LL 29) demonstrated that synthesized NPs were cytocompatible at MIC50 in both cell lines and markedly reduced the cytotoxic effect observed with mBTL alone on these cells. The resulting formulation reduced the P. aeruginosa strains' adhesion to A549 comparably with mBTL, suggesting their potential anti-adhesive effect. Given the virulence suppressing action, cytocompatibility, and enhanced anti-biofilm effect of mBTL-CANPs, and the advantage of alginate-based NPs as an antimicrobial delivery system these nanoparticles have great potential in the prophylaxis and treatment of infection caused by Pseudomonas aeruginosa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA