Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
EMBO Rep ; 19(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30166336

RESUMEN

SOX transcription factors have important roles during astrocyte and oligodendrocyte development, but how glial genes are specified and activated in a sub-lineage-specific fashion remains unknown. Here, we define glial-specific gene expression in the developing spinal cord using single-cell RNA-sequencing. Moreover, by ChIP-seq analyses we show that these glial gene sets are extensively preselected already in multipotent neural precursor cells through prebinding by SOX3. In the subsequent lineage-restricted glial precursor cells, astrocyte genes become additionally targeted by SOX9 at DNA regions strongly enriched for Nfi binding motifs. Oligodendrocyte genes instead are prebound by SOX9 only, at sites which during oligodendrocyte maturation are targeted by SOX10. Interestingly, reporter gene assays and functional studies in the spinal cord reveal that SOX3 binding represses the synergistic activation of astrocyte genes by SOX9 and NFIA, whereas oligodendrocyte genes are activated in a combinatorial manner by SOX9 and SOX10. These genome-wide studies demonstrate how sequentially expressed SOX proteins act on lineage-specific regulatory DNA elements to coordinate glial gene expression both in a temporal and in a sub-lineage-specific fashion.


Asunto(s)
Astrocitos/fisiología , Oligodendroglía/fisiología , Factor de Transcripción SOX9/genética , Factores de Transcripción SOXB1/genética , Médula Espinal/citología , Animales , Diferenciación Celular/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Ratones , Células-Madre Neurales , Neuroglía/citología , Neuroglía/fisiología , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/crecimiento & desarrollo
2.
Nucleic Acids Res ; 46(W1): W163-W170, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29893885

RESUMEN

The new web resource EviNet provides an easily run interface to network enrichment analysis for exploration of novel, experimentally defined gene sets. The major advantages of this analysis are (i) applicability to any genes found in the global network rather than only to those with pathway/ontology term annotations, (ii) ability to connect genes via different molecular mechanisms rather than within one high-throughput platform, and (iii) statistical power sufficient to detect enrichment of very small sets, down to individual genes. The users' gene sets are either defined prior to upload or derived interactively from an uploaded file by differential expression criteria. The pathways and networks used in the analysis can be chosen from the collection menu. The calculation is typically done within seconds or minutes and the stable URL is provided immediately. The results are presented in both visual (network graphs) and tabular formats using jQuery libraries. Uploaded data and analysis results are kept in separated project directories not accessible by other users. EviNet is available at https://www.evinet.org/.


Asunto(s)
Genes , Programas Informáticos , Animales , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Internet , Ratones , Transcriptoma
3.
Genome Res ; 26(10): 1342-1354, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27486082

RESUMEN

Pluripotency, differentiation, and X Chromosome inactivation (XCI) are key aspects of embryonic development. However, the underlying relationship and mechanisms among these processes remain unclear. Here, we systematically dissected these features along developmental progression using mouse embryonic stem cells (mESCs) and single-cell RNA sequencing with allelic resolution. We found that mESCs grown in a ground state 2i condition displayed transcriptomic profiles diffused from preimplantation mouse embryonic cells, whereas EpiStem cells closely resembled the post-implantation epiblast. Sex-related gene expression varied greatly across distinct developmental states. We also identified novel markers that were highly enriched in each developmental state. Moreover, we revealed that several novel pathways, including PluriNetWork and Focal Adhesion, were responsible for the delayed progression of female EpiStem cells. Importantly, we "digitalized" XCI progression using allelic expression of active and inactive X Chromosomes and surprisingly found that XCI states exhibited profound variability in each developmental state, including the 2i condition. XCI progression was not tightly synchronized with loss of pluripotency and increase of differentiation at the single-cell level, although these processes were globally correlated. In addition, highly expressed genes, including core pluripotency factors, were in general biallelically expressed. Taken together, our study sheds light on the dynamics of XCI progression and the asynchronicity between pluripotency, differentiation, and XCI.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Inactivación del Cromosoma X , Animales , Células Cultivadas , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Pluripotentes/metabolismo , Análisis de la Célula Individual , Transcriptoma
4.
Stem Cells ; 32(3): 609-22, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24549637

RESUMEN

An important goal in stem cell biology is to develop methods for efficient generation of clinically interesting cell types from relevant stem cell populations. This is particularly challenging for different types of neurons of the central nervous system where hundreds of distinct neuronal cell types are generated during embryonic development. We previously used a strategy based on forced transcription factor expression in embryonic stem cell-derived neural progenitors to generate specific types of neurons, including dopamine and serotonin neurons. Here, we extend these studies and show that noradrenergic neurons can also be generated from pluripotent embryonic stem cells by forced expression of the homeobox transcription factor Phox2b under the signaling influence of fibroblast growth factor 8 (FGF8) and bone morphogenetic proteins. In neural progenitors exposed to FGF8 and sonic hedgehog both Phox2b and the related Phox2a instead promoted the generation of neurons with the characteristics of mid- and hindbrain motor neurons. The efficient generation of these neuron types enabled a comprehensive genome-wide gene expression analysis that provided further validation of the identity of generated cells. Moreover, we also demonstrate that the generated cell types are amenable to drug testing in vitro and we show that variants of the differentiation protocols can be applied to cultures of human pluripotent stem cells for the generation of human noradrenergic and visceral motor neurons. Thus, these studies provide a basis for characterization of yet an additional highly clinically relevant neuronal cell type.


Asunto(s)
Neuronas Adrenérgicas/citología , Linaje de la Célula , Células Madre Embrionarias/citología , Neuronas Motoras/citología , Factores de Transcripción/metabolismo , Neuronas Adrenérgicas/metabolismo , Animales , Línea Celular , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Ingeniería Genética , Genoma/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Neuronas Motoras/metabolismo , Transducción de Señal
5.
Development ; 138(16): 3399-408, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21752929

RESUMEN

The severe disorders associated with a loss or dysfunction of midbrain dopamine neurons (DNs) have intensified research aimed at deciphering developmental programs controlling midbrain development. The homeodomain proteins Lmx1a and Lmx1b are important for the specification of DNs during embryogenesis, but it is unclear to what degree they may mediate redundant or specific functions. Here, we provide evidence showing that DN progenitors in the ventral midbrain can be subdivided into molecularly distinct medial and lateral domains, and these subgroups show different sensitivity to the loss of Lmx1a and Lmx1b. Lmx1a is specifically required for converting non-neuronal floor-plate cells into neuronal DN progenitors, a process that involves the establishment of Notch signaling in ventral midline cells. On the other hand, lateral DN progenitors that do not appear to originate from the floor plate are selectively ablated in Lmx1b mutants. In addition, we also reveal an unanticipated role for Lmx1b in regulating Phox2a expression and the sequential specification of ocular motor neurons (OMNs) and red nucleus neurons (RNNs) from progenitors located lateral to DNs in the midbrain. Our data therefore establish that Lmx1b influences the differentiation of multiple neuronal subtypes in the ventral midbrain, whereas Lmx1a appears to be exclusively devoted to the differentiation of the DN lineage.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Factores de Transcripción/metabolismo , Animales , Apoptosis , Linaje de la Célula , Dopamina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM , Mesencéfalo/citología , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Factores de Transcripción/genética
6.
Nat Neurosci ; 26(5): 891-901, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37095395

RESUMEN

The spatiotemporal regulation of cell fate specification in the human developing spinal cord remains largely unknown. In this study, by performing integrated analysis of single-cell and spatial multi-omics data, we used 16 prenatal human samples to create a comprehensive developmental cell atlas of the spinal cord during post-conceptional weeks 5-12. This revealed how the cell fate commitment of neural progenitor cells and their spatial positioning are spatiotemporally regulated by specific gene sets. We identified unique events in human spinal cord development relative to rodents, including earlier quiescence of active neural stem cells, differential regulation of cell differentiation and distinct spatiotemporal genetic regulation of cell fate choices. In addition, by integrating our atlas with pediatric ependymomas data, we identified specific molecular signatures and lineage-specific genes of cancer stem cells during progression. Thus, we delineate spatiotemporal genetic regulation of human spinal cord development and leverage these data to gain disease insight.


Asunto(s)
Ependimoma , Células-Madre Neurales , Niño , Femenino , Embarazo , Humanos , Médula Espinal , Ependimoma/genética , Ependimoma/metabolismo , Diferenciación Celular/genética , Células-Madre Neurales/fisiología , Expresión Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética
7.
Proc Natl Acad Sci U S A ; 106(18): 7613-8, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19383789

RESUMEN

Signaling factors involved in CNS development have been used to control the differentiation of embryonic stem cells (ESCs) into mesencephalic dopamine (mesDA) neurons, but tend to generate a limited yield of desired cell type. Here we show that forced expression of Lmx1a, a transcription factor functioning as a determinant of mesDA neurons during embryogenesis, effectively can promote the generation of mesDA neurons from mouse and human ESCs. Under permissive culture conditions, 75%-95% of mouse ESC-derived neurons express molecular and physiological properties characteristic of bona fide mesDA neurons. Similar to primary mesDA neurons, these cells integrate and innervate the striatum of 6-hydroxy dopamine lesioned neonatal rats. Thus, the enriched generation of functional mesDA neurons by forced expression of Lmx1a may be of future importance in cell replacement therapy of Parkinson disease.


Asunto(s)
Dopamina/metabolismo , Células Madre Embrionarias/fisiología , Proteínas de Homeodominio/biosíntesis , Mesencéfalo/citología , Neurogénesis , Neuronas/citología , Animales , Células Madre Embrionarias/citología , Células Madre Embrionarias/trasplante , Proteínas de Homeodominio/genética , Humanos , Proteínas con Homeodominio LIM , Ratones , Enfermedad de Parkinson/cirugía , Ratas , Ratas Sprague-Dawley , Factores de Transcripción
8.
Nat Commun ; 13(1): 3046, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650213

RESUMEN

Stem cell therapies for Parkinson's disease (PD) have entered first-in-human clinical trials using a set of technically related methods to produce mesencephalic dopamine (mDA) neurons from human pluripotent stem cells (hPSCs). Here, we outline an approach for high-yield derivation of mDA neurons that principally differs from alternative technologies by utilizing retinoic acid (RA) signaling, instead of WNT and FGF8 signaling, to specify mesencephalic fate. Unlike most morphogen signals, where precise concentration determines cell fate, it is the duration of RA exposure that is the key-parameter for mesencephalic specification. This concentration-insensitive patterning approach provides robustness and reduces the need for protocol-adjustments between hPSC-lines. RA-specified progenitors promptly differentiate into functional mDA neurons in vitro, and successfully engraft and relieve motor deficits after transplantation in a rat PD model. Our study provides a potential alternative route for cell therapy and disease modelling that due to its robustness could be particularly expedient when use of autologous- or immunologically matched cells is considered.


Asunto(s)
Enfermedad de Parkinson , Células Madre Pluripotentes , Animales , Diferenciación Celular , Neuronas Dopaminérgicas , Humanos , Mesencéfalo , Enfermedad de Parkinson/terapia , Ratas , Tretinoina/farmacología
9.
Sci Adv ; 6(38)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32938678

RESUMEN

How time is measured by neural stem cells during temporal neurogenesis has remained unresolved. By combining experiments and computational modeling, we define a Shh/Gli-driven three-node timer underlying the sequential generation of motor neurons (MNs) and serotonergic neurons in the brainstem. The timer is founded on temporal decline of Gli-activator and Gli-repressor activities established through down-regulation of Gli transcription. The circuitry conforms an incoherent feed-forward loop, whereby Gli proteins not only promote expression of Phox2b and thereby MN-fate but also account for a delayed activation of a self-promoting transforming growth factor-ß (Tgfß) node triggering a fate switch by repressing Phox2b. Hysteresis and spatial averaging by diffusion of Tgfß counteract noise and increase temporal accuracy at the population level, providing a functional rationale for the intrinsically programmed activation of extrinsic switch signals in temporal patterning. Our study defines how time is reliably encoded during the sequential specification of neurons.

10.
Neuron ; 84(5): 927-39, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25467979

RESUMEN

How the sequential specification of neurons and progressive loss of potency associated with aging neural progenitors are regulated in vertebrate brain development is poorly understood. By examining a temporal differentiation lineage in the hindbrain, we here identify Tgfß as a switch signal that executes the transition between early and late phases of neurogenesis and concurrently constrains progenitor potency. Young progenitors have inherent competence to produce late-born neurons, but implementation of late-differentiation programs requires suppression of early identity genes achieved through temporally programmed activation of Tgfß downstream of Shh signaling. Unexpectedly, we find that sequentially occurring fate-switch decisions are temporally coupled, and onset of Tgfß signaling appears thereby to impact on the overall lifespan of the temporal lineage. Our study establishes Tgfß as a regulator of temporal identity and potency of neural stem cells, and provides proof of concept that Tgfß can be applied to modulate temporal specification of neurons in stem cell engineering.


Asunto(s)
Sistema Nervioso Central/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/fisiología , Factores de Edad , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Células Cultivadas , Embrión de Pollo , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Ratones , Ratones Transgénicos , Tubo Neural , Técnicas de Cultivo de Órganos , Embarazo , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra
11.
Stem Cells Dev ; 23(1): 5-15, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24007338

RESUMEN

Studies in model organisms constitute the basis of our understanding of the principal molecular mechanisms of cell fate determination in the developing central nervous system. Considering the emergent applications in stem cell-based regenerative medicine, it is important to demonstrate conservation of subtype specific gene expression programs in human as compared to model vertebrates. We have examined the expression patterns of key regulatory genes in neural progenitor cells and their neuronal and glial descendants in the developing human spinal cord, hindbrain, and midbrain, and compared these with developing mouse and chicken embryos. As anticipated, gene expression patterns are highly conserved between these vertebrate species, but there are also features that appear unique to human development. In particular, we find that neither tyrosine hydroxylase nor Nurr1 are specific markers for mesencephalic dopamine neurons, as these genes also are expressed in other neuronal subtypes in the human ventral midbrain and in human embryonic stem cell cultures directed to differentiate towards a ventral mesencephalic identity. Moreover, somatic motor neurons in the ventral spinal cord appear to be produced by two molecularly distinct ventral progenitor populations in the human, raising the possibility that the acquisition of unique ventral progenitor identities may have contributed to the emergence of neural subtypes in higher vertebrates.


Asunto(s)
Mesencéfalo/embriología , Células-Madre Neurales/citología , Tubo Neural/embriología , Rombencéfalo/embriología , Médula Espinal/embriología , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Pollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Mesencéfalo/citología , Ratones , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/citología , Neuronas/citología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Rombencéfalo/citología , Médula Espinal/citología , Tirosina 3-Monooxigenasa/genética
12.
Dev Cell ; 23(5): 1006-19, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23153497

RESUMEN

Morphogens orchestrate tissue patterning in a concentration-dependent fashion during vertebrate embryogenesis, yet little is known of how positional information provided by such signals is translated into discrete transcriptional outputs. Here we have identified and characterized cis-regulatory modules (CRMs) of genes operating downstream of graded Shh signaling and bifunctional Gli proteins in neural patterning. Unexpectedly, we find that Gli activators have a noninstructive role in long-range patterning and cooperate with SoxB1 proteins to facilitate a largely concentration-independent mode of gene activation. Instead, the opposing Gli-repressor gradient is interpreted at transcriptional levels, and, together with CRM-specific repressive input of homeodomain proteins, comprises a repressive network that translates graded Shh signaling into regional gene expression patterns. Moreover, local and long-range interpretation of Shh signaling differs with respect to CRM context sensitivity and Gli-activator dependence, and we propose that these differences provide insight into how morphogen function may have mechanistically evolved from an initially binary inductive event.


Asunto(s)
Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Neurogénesis , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Proteína con Dedos de Zinc GLI1
13.
Cell Stem Cell ; 8(6): 663-75, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21624811

RESUMEN

The generation of specific types of neurons from stem cells offers important opportunities in regenerative medicine. However, future applications and proper verification of cell identities will require stringent ways to generate homogeneous neuronal cultures. Here we show that transcription factors like Lmx1a, Phox2b, Nkx2.2, and Olig2 can induce desired neuronal lineages from most expressing neural progenitor cells by a mechanism resembling developmental binary cell-fate switching. Such efficient selection of cell fate resulted in remarkable cellular enrichment that enabled global gene-expression validation of generated neurons and identification of previously unrecognized features in the studied cell lineages. Several sources of stem cells have a limited competence to differentiate into specific neuronal cell types; e.g., dopamine neurons. However, we show that the combination of factors that normally promote either regional or dedicated neuronal specification can overcome limitations in cellular competence and also promote efficient reprogramming in more remote neural contexts, including human neural progenitor cells.


Asunto(s)
Linaje de la Célula , Células-Madre Neurales/citología , Neuronas/citología , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Nucleares , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra
14.
Cell ; 124(2): 393-405, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16439212

RESUMEN

The prospect of using cell replacement therapies has raised the key issue of whether elucidation of developmental pathways can facilitate the generation of therapeutically important cell types from stem cells. Here we show that the homeodomain proteins Lmx1a and Msx1 function as determinants of midbrain dopamine neurons, cells that degenerate in patients with Parkinson's disease. Lmx1a is sufficient and required to trigger dopamine cell differentiation. An early activity of Lmx1a is to induce the expression of Msx1, which complements Lmx1a by inducing the proneural protein Ngn2 and neuronal differentiation. Importantly, expression of Lmx1a in embryonic stem cells results in a robust generation of dopamine neurons with a "correct" midbrain identity. These data establish that Lmx1a and Msx1 are critical intrinsic dopamine-neuron determinants in vivo and suggest that they may be essential tools in cell replacement strategies in Parkinson's disease.


Asunto(s)
Proteínas de Homeodominio/análisis , Factor de Transcripción MSX1/análisis , Mesencéfalo/química , Neuronas/química , Animales , Células Cultivadas , Embrión de Pollo , Dopamina/metabolismo , Investigaciones con Embriones , Proteínas Hedgehog , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Factor de Transcripción MSX1/metabolismo , Factor de Transcripción MSX1/farmacología , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Ratones , Neuronas/metabolismo , Transducción de Señal , Células Madre/química , Células Madre/metabolismo , Transactivadores/metabolismo , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA