Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Lancet Haematol ; 9(2): e98-e110, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35032434

RESUMEN

BACKGROUND: Melphalan flufenamide (melflufen), an alkylating peptide-drug conjugate, plus dexamethasone showed clinical activity and manageable safety in the phase 2 HORIZON study. We aimed to determine whether melflufen plus dexamethasone would provide a progression-free survival benefit compared with pomalidomide plus dexamethasone in patients with previously treated multiple myeloma. METHODS: In this randomised, open-label, head-to-head, phase 3 study (OCEAN), adult patients (aged ≥18 years) were recruited from 108 university hospitals, specialist hospitals, and community-based centres in 21 countries across Europe, North America, and Asia. Eligible patients had an ECOG performance status of 0-2; must have had relapsed or refractory multiple myeloma, refractory to lenalidomide (within 18 months of randomisation) and to the last line of therapy; and have received two to four previous lines of therapy (including lenalidomide and a proteasome inhibitor). Patients were randomly assigned (1:1), stratified by age, number of previous lines of therapy, and International Staging System score, to either 28-day cycles of melflufen and dexamethasone (melflufen group) or pomalidomide and dexamethasone (pomalidomide group). All patients received dexamethasone 40 mg orally on days 1, 8, 15, and 22 of each cycle. In the melflufen group, patients received melflufen 40 mg intravenously over 30 min on day 1 of each cycle and in the pomalidomide group, patients received pomalidomide 4 mg orally daily on days 1 to 21 of each cycle. The primary endpoint was progression-free survival assessed by an independent review committee in the intention-to-treat (ITT) population. Safety was assessed in patients who received at least one dose of study medication. This study is registered with ClinicalTrials.gov, NCT03151811, and is ongoing. FINDINGS: Between June 12, 2017, and Sept 3, 2020, 246 patients were randomly assigned to the melflufen group (median age 68 years [IQR 60-72]; 107 [43%] were female) and 249 to the pomalidomide group (median age 68 years [IQR 61-72]; 109 [44%] were female). 474 patients received at least one dose of study drug (melflufen group n=228; pomalidomide group n=246; safety population). Data cutoff was Feb 3, 2021. Median progression-free survival was 6·8 months (95% CI 5·0-8·5; 165 [67%] of 246 patients had an event) in the melflufen group and 4·9 months (4·2-5·7; 190 [76%] of 249 patients had an event) in the pomalidomide group (hazard ratio [HR] 0·79, [95% CI 0·64-0·98]; p=0·032), at a median follow-up of 15·5 months (IQR 9·4-22·8) in the melflufen group and 16·3 months (10·1-23·2) in the pomalidomide group. Median overall survival was 19·8 months (95% CI 15·1-25·6) at a median follow-up of 19·8 months (IQR 12·0-25·0) in the melflufen group and 25·0 months (95% CI 18·1-31·9) in the pomalidomide group at a median follow-up of 18·6 months (IQR 11·8-23·7; HR 1·10 [95% CI 0·85-1·44]; p=0·47). The most common grade 3 or 4 treatment-emergent adverse events were thrombocytopenia (143 [63%] of 228 in the melflufen group vs 26 [11%] of 246 in the pomalidomide group), neutropenia (123 [54%] vs 102 [41%]), and anaemia (97 [43%] vs 44 [18%]). Serious treatment-emergent adverse events occurred in 95 (42%) patients in the melflufen group and 113 (46%) in the pomalidomide group, the most common of which were pneumonia (13 [6%] vs 21 [9%]), COVID-19 pneumonia (11 [5%] vs nine [4%]), and thrombocytopenia (nine [4%] vs three [1%]). 27 [12%] patients in the melflufen group and 32 [13%] in the pomalidomide group had fatal treatment-emergent adverse events. Fatal treatment-emergent adverse events were considered possibly treatment related in two patients in the melflufen group (one with acute myeloid leukaemia, one with pancytopenia and acute cardiac failure) and four patients in the pomalidomide group (two patients with pneumonia, one with myelodysplastic syndromes, one with COVID-19 pneumonia). INTERPRETATION: Melflufen plus dexamethasone showed superior progression-free survival than pomalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. FUNDING: Oncopeptides AB.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Mieloma Múltiple , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Dexametasona/efectos adversos , Femenino , Humanos , Lenalidomida/efectos adversos , Masculino , Melfalán/efectos adversos , Melfalán/análogos & derivados , Persona de Mediana Edad , Mieloma Múltiple/tratamiento farmacológico , Fenilalanina/efectos adversos , Fenilalanina/análogos & derivados , SARS-CoV-2 , Talidomida/efectos adversos , Talidomida/análogos & derivados , Tratamiento Farmacológico de COVID-19
2.
Biosens Bioelectron ; 26(4): 1337-45, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20705444

RESUMEN

The performance of biomedical microdevices requires the accurate control of the biomolecule concentration on the surface, as well as the preservation of their bioactivity. This desideratum is even more critical for proteins, which present a significant propensity for surface-induced denaturation, and for microarrays, which require high multiplexing. We have previously proposed a method for protein immobilisation on micro/nanostructures fabricated via laser ablation of a thin metal layer deposited on a transparent polymer. This study investigates the relationship between the properties of the micro/nanostructured surface, i.e., topography and physico-chemistry, and protein immobilisation, for five, molecularly different proteins, i.e., lysozyme, myoglobin, α-chymotrypsin, human serum albumin, and human immunoglobulin. Protein immobilisation on microstructures has been characterised using quantitative fluorescence measurements and atomic force microscopy. It has been found that the sub-micrometer-level, combinatorial nature of the microstructure translates in a 3-10-fold amplification of protein adsorption, as compared to flat, chemically homogenous polymeric surfaces. This amplification is more pronounced for smaller proteins, as they can capitalize better on the newly created surface and variability of the nano-environments.


Asunto(s)
Proteínas Inmovilizadas , Nanoestructuras , Análisis por Matrices de Proteínas/métodos , Adsorción , Quimotripsina , Humanos , Inmunoglobulina G , Rayos Láser , Microscopía de Fuerza Atómica , Muramidasa , Mioglobina , Análisis por Matrices de Proteínas/instrumentación , Albúmina Sérica , Propiedades de Superficie , Temperatura
3.
Biomed Mater ; 1(1): 24-32, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18458382

RESUMEN

The adsorption and covalent immobilization of human immunoglobulin (HIgG) and lysozyme (LYZ) on surface-modified poly(tert-butyl methacrylate) PtBMA films have been evaluated using x-ray photoelectron spectroscopy (XPS), ellipsometry and atomic force microscopy (AFM). Surface modification of PtBMA (UV irradiation) afforded surfaces suitable for both the physical and covalent attachment of proteins. The XPS and ellipsometry results showed good correlation in terms of variable-dense/thickness protein layer formation between physisorbed and covalently bound proteins. The amount of physisorbed HIgG ranged from 23.0 +/- 1.6 ng mm(2) on PtBMA, with corresponding film thicknesses 17.0 +/- 1.2 nm. Covalent immobilization mediated through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysulfosuccinimide (sulfo-NHS) coupling chemistry, afforded 5.6-8 ng mm(2) of HIgG with a corresponding thickness of 5.9 +/- 0.6 nm on PtBMA. The attachment of LYZ to modified PtBMA surface was similarly translated, where adsorption yielded up to 15 ng mm(2), while covalent immobilization afforded typically 7-8 ng mm(2). The thickness of the adsorbed LYZ protein layer was 11.0 +/- 3.2 nm (PtBMA), suggesting the greater portion of protein adsorbs on surface-modified PtBMA.


Asunto(s)
Materiales Biocompatibles/química , Inmunoglobulina G/química , Metacrilatos/química , Muramidasa/química , Absorción , Sitios de Unión , Enzimas Inmovilizadas , Humanos , Ensayo de Materiales , Unión Proteica , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA