Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Trends Genet ; 23(5): 250-7, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17379352

RESUMEN

As an adaptive response to new conditions, mRNA concentrations in eukaryotes are readjusted after any environmental change. Although mRNA concentrations can be modified by altering synthesis and/or degradation rates, the rapidity of the transition to a new concentration depends on the regulation of mRNA stability. There are several plausible transcriptional strategies following environmental change, reflecting different degrees of compromise between speed of response and cost of synthesis. The recent development of genomic techniques now enables researchers to determine simultaneously (either directly or indirectly) the transcription rates and mRNA half-lifes, together with mRNA concentrations, corresponding to all yeast genes. Such experiments could provide a new picture of the transcriptional response, by enabling us to characterize the kinetic strategies that are used by different genes under given environmental conditions.


Asunto(s)
Genómica/métodos , Saccharomyces cerevisiae/genética , Transcripción Genética , Predicción , Expresión Génica , Cinética , Modelos Genéticos , ARN Mensajero/metabolismo
2.
Nature ; 427(6972): 370-4, 2004 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-14737171

RESUMEN

Regulation of gene expression by mitogen-activated protein kinases (MAPKs) is essential for proper cell adaptation to extracellular stimuli. Exposure of yeast cells to high osmolarity results in rapid activation of the MAPK Hog1, which coordinates the transcriptional programme required for cell survival on osmostress. The mechanisms by which Hog1 and MAPKs in general regulate gene expression are not completely understood, although Hog1 can modify some transcription factors. Here we propose that Hog1 induces gene expression by a mechanism that involves recruiting a specific histone deacetylase complex to the promoters of genes regulated by osmostress. Cells lacking the Rpd3-Sin3 histone deacetylase complex are sensitive to high osmolarity and show compromised expression of osmostress genes. Hog1 interacts physically with Rpd3 in vivo and in vitro and, on stress, targets the deacetylase to specific osmostress-responsive genes. Binding of the Rpd3-Sin3 complex to specific promoters leads to histone deacetylation, entry of RNA polymerase II and induction of gene expression. Together, our data indicate that targeting of the Rpd3 histone deacetylase to osmoresponsive promoters by the MAPK Hog1 is required to induce gene expression on stress.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Histona Desacetilasas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Presión Osmótica , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Genes Fúngicos/genética , Histona Desacetilasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Polimerasa II/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
3.
Mol Cell Biol ; 26(23): 8710-21, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17000768

RESUMEN

The FACT complex stimulates transcription elongation on nucleosomal templates. In vivo experiments also involve FACT in the reassembly of nucleosomes traversed by RNA polymerase II. Since several features of chromatin organization vary throughout the genome, we wondered whether FACT is equally required for all genes. We show in this study that the in vivo depletion of Spt16, one of the subunits of Saccharomyces cerevisiae FACT, strongly affects transcription of three genes, GAL1, PHO5, and Kluyveromyces lactis LAC4, which exhibit positioned nucleosomes at their transcribed regions. In contrast, showing a random nucleosome structure, YAT1 and Escherichia coli lacZ are only mildly influenced by Spt16 depletion. We also show that the effect of Spt16 depletion on GAL1 expression is suppressed by a histone mutation and that the insertion of a GAL1 fragment, which allows the positioning of two nucleosomes, at the 5' end of YAT1 makes the resulting transcription unit sensitive to Spt16 depletion. These results indicate that FACT requirement for transcription depends on the chromatin organization of the 5' end of the transcribed region.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas del Grupo de Alta Movilidad/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Transcripción Genética , Factores de Elongación Transcripcional/fisiología , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Plásmidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Factores de Elongación Transcripcional/genética
4.
EMBO Rep ; 3(8): 735-40, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12151331

RESUMEN

In response to changes in the extracellular environment, cells coordinate intracellular activities to maximize their probability of survival and proliferation. Eukaryotic cells, from yeast to mammals, transduce diverse extracellular stimuli through the cell by multiple mitogen-activated protein kinase (MAPK) cascades. Exposure of cells to increases in extracellular osmolarity results in rapid activation of a highly conserved family of MAPKs, known as stress-activated MAPKs (SAPKs). Activation of SAPKs is essential for the induction of adaptive responses required for cell survival upon osmostress. Recent studies have begun to shed light on the broad effects of SAPK activation in the modulation of several aspects of cell physiology, ranging from the control of gene expression to the regulation of cell division.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Animales , Ciclo Celular , Regulación hacia Abajo , Activación Enzimática , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Presión Osmótica , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , Transducción de Señal , Transcripción Genética
5.
EMBO J ; 22(10): 2433-42, 2003 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12743037

RESUMEN

In budding yeast, the mitogen-activated protein kinase (MAPK) Hog1 coordinates the transcriptional program required for cell survival upon osmostress. The Hot1 transcription factor acts downstream of the MAPK and regulates a subset of Hog1-responsive genes. In response to high osmolarity, Hot1 targets Hog1 to specific osmostress-responsive promoters. Here, we show that assembly of the general transcription machinery at Hot1-dependent promoters depends on the presence of Hot1 and active Hog1 MAPK. Unexpectedly, recruitment of RNA polymerase (Pol) II complex to target promoters does not depend on the phosphorylation of the Hot1 activator by the MAPK. Hog1 interacts with the RNA Pol II and with general components of the transcription machinery. More over, when tethered to a promoter as a LexA fusion protein, Hog1 activates transcription in a stress- regulated manner. Thus, anchoring of active Hog1 to promoters by the Hot1 activator is essential for recruitment and activation of RNA Pol II. The mammalian p38 also interacts with the RNA Pol II, which might suggest a conserved mechanism for regulation of gene expression by SAPKs among eukaryotic cells.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Presión Osmótica , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética , Activación Enzimática , Regulación Fúngica de la Expresión Génica , Genes Reporteros , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA