Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(2): 1167-1173, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34931208

RESUMEN

A recently introduced concept of reduced paramagnetic shifts (RPS) in NMR spectroscopy is applied here to a series of paramagnetic complexes with different metal ions, such as iron(II), iron(III) and cobalt(II), in different coordination environments of N-donor ligands, including a unique trigonal-prismatic geometry that is behind some record single-molecule magnet behaviours. A simple, almost visual analysis of the chemical shifts as a function of temperature, which is at the core of this approach, allows for a correct signal assignment and evaluation of the anisotropy of the magnetic susceptibility, the key indicator of a good single molecule magnet, that often cannot be done using traditional techniques rooted in quantum chemistry and NMR spectroscopy. The proposed approach thus emerged as a powerful alternative in deciphering the NMR spectra of paramagnetic compounds for applications in data processing and storage, magnetic resonance imaging and structural biology.

2.
Chemphyschem ; 20(8): 1001-1005, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30897255

RESUMEN

Herein, we report a new trigonal prismatic cobalt(II) complex that behaves as a single molecule magnet. The obtained zero-field splitting, which is also directly accessed by THz-EPR spectroscopy (-102.5 cm-1 ), results in a large magnetization reversal barrier U of 205 cm-1 . Its effective value, however, is much lower (101 cm-1 ), even though there is practically no contribution from quantum tunneling to magnetization relaxation.

3.
Chem Sci ; 15(24): 9047-9053, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903210

RESUMEN

Ditopic bis-pyrazolylpyridine ligands usually react with divalent metal ions (M2+) to produce dinuclear triple-stranded helicates [M2L3]4+ or, via π⋯π interactions, dimers of monoatomic complexes ([ML3]2)4+. The introduction of an additional benzene ring at each end of ligand L increases the number of aromatic contacts within the supramolecular aggregate by 40%, driving the self-recognition process in an irreversible manner. Consequently, the mixing of new bis-pyrazolylquinoline L2 with FeX2 salts leads to crystallization of the tripartite high-spin assemblies (X@[Fe(L2)3]2)3+ (X = Cl, Br or I). The aggregates exhibit exceptional stability, as confirmed by a combination of paramagnetic 1H NMR techniques, demonstrating their persistence in solution. Our investigations further reveal that the guests Br- and I- are retained inside the associate in solution but Cl- is immediately released, resulting in the formation of the empty supramolecular dimer ([Fe(L2)3]2)4+.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA