Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biochemistry (Mosc) ; 89(1): 184-195, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38467554

RESUMEN

Cell migration is largely determined by the type of protrusions formed by the cell. Mesenchymal migration is accomplished by formation of lamellipodia and/or filopodia, while amoeboid migration is based on bleb formation. Changing of migrational conditions can lead to alteration in the character of cell movement. For example, inhibition of the Arp2/3-dependent actin polymerization by the CK-666 inhibitor leads to transition from mesenchymal to amoeboid motility mode. Ability of the cells to switch from one type of motility to another is called migratory plasticity. Cellular mechanisms regulating migratory plasticity are poorly understood. One of the factors determining the possibility of migratory plasticity may be the presence and/or organization of vimentin intermediate filaments (VIFs). To investigate whether organization of the VIF network affects the ability of fibroblasts to form membrane blebs, we used rat embryo fibroblasts REF52 with normal VIF organization, fibroblasts with vimentin knockout (REF-/-), and fibroblasts with mutation inhibiting assembly of the full-length VIFs (REF117). Blebs formation was induced by treatment of cells with CK-666. Vimentin knockout did not lead to statistically significant increase in the number of cells with blebs. The fibroblasts with short fragments of vimentin demonstrate the significant increase in number of cells forming blebs both spontaneously and in the presence of CK-666. Disruption of the VIF organization did not lead to the significant changes in the microtubules network or the level of myosin light chain phosphorylation, but caused significant reduction in the focal contact system. The most pronounced and statistically significant decrease in both size and number of focal adhesions were observed in the REF117 cells. We believe that regulation of the membrane blebbing by VIFs is mediated by their effect on the focal adhesion system. Analysis of migration of fibroblasts with different organization of VIFs in a three-dimensional collagen gel showed that organization of VIFs determines the type of cell protrusions, which, in turn, determines the character of cell movement. A novel role of VIFs as a regulator of membrane blebbing, essential for manifestation of the migratory plasticity, is shown.


Asunto(s)
Adhesiones Focales , Filamentos Intermedios , Ratas , Animales , Filamentos Intermedios/metabolismo , Adhesiones Focales/metabolismo , Vimentina/genética , Vimentina/metabolismo , Vimentina/farmacología , Microtúbulos/metabolismo , Movimiento Celular , Extensiones de la Superficie Celular/metabolismo
2.
EMBO J ; 37(13)2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29844016

RESUMEN

The Arp2/3 complex generates branched actin networks that exert pushing forces onto different cellular membranes. WASH complexes activate Arp2/3 complexes at the surface of endosomes and thereby fission transport intermediates containing endocytosed receptors, such as α5ß1 integrins. How WASH complexes are assembled in the cell is unknown. Here, we identify the small coiled-coil protein HSBP1 as a factor that specifically promotes the assembly of a ternary complex composed of CCDC53, WASH, and FAM21 by dissociating the CCDC53 homotrimeric precursor. HSBP1 operates at the centrosome, which concentrates the building blocks. HSBP1 depletion in human cancer cell lines and in Dictyostelium amoebae phenocopies WASH depletion, suggesting a critical role of the ternary WASH complex for WASH functions. HSBP1 is required for the development of focal adhesions and of cell polarity. These defects impair the migration and invasion of tumor cells. Overexpression of HSBP1 in breast tumors is associated with increased levels of WASH complexes and with poor prognosis for patients.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Microfilamentos/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Modelos Moleculares , Pronóstico
3.
Biochemistry (Mosc) ; 87(12): 1651-1661, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36717454

RESUMEN

Epithelial-mesenchymal transition (EMT) is a critical step in tumor progression that leads to the acquisition by cancer cells the capacity for migration using the mesenchymal motility mode regulated by the Rac→WAVE→Arp2/3 signaling pathway. Earlier it was shown that proteins interacting with Rac can regulate mesenchymal migration and thus determine the metastatic potential of the cells. The search for new regulators of cell migration is an important theoretical and practical task. The adaptor protein Anks1a is one of the proteins interacting with Rac, whose expression is altered in many types of tumors. The aim of this study was to find whether Anks1a affects the migration of cancer cells and to identify the mechanism underlying this effect. It was suggested that Anks1a can influence cancer cell migration either as a Rac1 effector or by activating human epidermal growth factor receptor 2 (HER2) exchange. We investigated how upregulation and inhibition of Anks1a expression affected migration of breast cancer cells with different HER2 status. Anks1a was shown to interact with the activated form of Rac1. In the MDA-MB-231 cells (triple negative cancer), which lack HER2, Anks1a accumulated at the active cell edge, which is characterized by enrichment with active Rac1, whereas no such accumulation was observed in the HER2-overexpressing SK-BR-3 cells. Downregulation of the ANKS1a expression with esiRNA had almost no effect on the cancer cell motility, except a slight increase in the average migration rate of MDA-MB-231 cells. Among three cell lines tested, overexpression of Anks1a increased the migration rate of HER2-overexpressng SK-BR-3 cells only. We showed that Anks1a is an effector of activated Rac1, but its influence on the cell migration in this capacity was minimal, at least in the studied breast cancer cells. Anks1a affected the motility of breast cancer cells due to its involvement in the EGF receptor exchange.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Femenino , Humanos , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Transducción de Señal
4.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36613756

RESUMEN

Whole exome sequencing of invasive mammary carcinomas revealed the association of mutations in PTEN and ZFHX3 tumor suppressor genes (TSGs). We generated single and combined PTEN and ZFHX3 knock-outs (KOs) in the immortalized mammary epithelial cell line MCF10A to study the role of these genes and their potential synergy in migration regulation. Inactivation of PTEN, but not ZFHX3, induced the formation of large colonies in soft agar. ZFHX3 inactivation in PTEN KO, however, increased colony numbers and normalized their size. Cell migration was affected in different ways upon PTEN and ZFHX3 KO. Inactivation of PTEN enhanced coordinated cell motility and thus, the collective migration of epithelial islets and wound healing. In contrast, ZFHX3 knockout resulted in the acquisition of uncoordinated cell movement associated with the appearance of immature adhesive junctions (AJs) and the increased expression of the mesenchymal marker vimentin. Inactivation of the two TSGs thus induces different stages of partial epithelial-to-mesenchymal transitions (EMT). Upon double KO (DKO), cells displayed still another motile state, characterized by a decreased coordination in collective migration and high levels of vimentin but a restoration of mature linear AJs. This study illustrates the plasticity of migration modes of mammary cells transformed by a combination of cancer-associated genes.


Asunto(s)
Mama , Células Epiteliales , Humanos , Vimentina/metabolismo , Mama/metabolismo , Células Epiteliales/metabolismo , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas de Homeodominio/genética
5.
Biol Cell ; 111(10): 245-261, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31403697

RESUMEN

BACKGROUND INFORMATION: Metastatic disease is caused by the ability of cancer cells to reach distant organs and form secondary lesions at new locations. Dissemination of cancer cells depends on their migration plasticity - an ability to switch between motility modes driven by distinct molecular machineries. One of such switches is mesenchymal-to-amoeboid transition. Although mesenchymal migration of individual cells requires Arp2/3-dependent actin polymerisation, amoeboid migration is characterised by a high level of actomyosin contractility and often involves the formation of membrane blebs. The acquisition of amoeboid motility by mesenchymal cells is often associated with enhanced metastasis. RESULTS: We studied the ability of mesenchymal HT1080 fibrosarcoma cells to switch to amoeboid motility. We induced the transition from lamellipodium-rich to blebbing phenotype either by down-regulating the Arp2/3 complex, pharmacologically or by RNAi, or by decreasing substrate adhesiveness. Each of these treatments induced blebbing in a subset of fibrosarcoma cells, but not in normal subcutaneous fibroblasts. A significant fraction of HT1080 cells that switched to blebbing behaviour exhibited stem cell-like features, such as expression of the stem cell marker CD133, an increased efflux of Hoechst-33342 and positive staining for Oct4, Sox2 and Nanog. Furthermore, the isolated CD133+ cells demonstrated an increased ability to switch to bleb-rich amoeboid phenotype both under inhibitor's treatment and in 3D collagen gels. CONCLUSIONS: Together, our data show a significant correlation between the increased ability of cells to switch between migration modes and their stem-like features, suggesting that migration plasticity is an additional property of stem-like population of fibrosarcoma cells. This combination of features could facilitate both dissemination of these cells to distant locations, and their establishment self-renewal in a new microenvironment, as required for metastasis formation. SIGNIFICANCE: These data suggest that migration plasticity is a new feature of cancer stem-like cells that can significantly facilitate their dissemination to a secondary location by allowing them to adapt quickly to challenging microenvironments. Moreover, it complements their resistance to apoptosis and self-renewal potential, thus enabling them not only to disseminate efficiently, but also to survive and colonise new niches.


Asunto(s)
Movimiento Celular , Fibrosarcoma/patología , Células Madre Neoplásicas/patología , Antígeno AC133/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Humanos , Microambiente Tumoral
6.
Nature ; 503(7475): 281-4, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24132237

RESUMEN

Cell migration requires the generation of branched actin networks that power the protrusion of the plasma membrane in lamellipodia. The actin-related proteins 2 and 3 (Arp2/3) complex is the molecular machine that nucleates these branched actin networks. This machine is activated at the leading edge of migrating cells by Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein (WAVE, also known as SCAR). The WAVE complex is itself directly activated by the small GTPase Rac, which induces lamellipodia. However, how cells regulate the directionality of migration is poorly understood. Here we identify a new protein, Arpin, that inhibits the Arp2/3 complex in vitro, and show that Rac signalling recruits and activates Arpin at the lamellipodial tip, like WAVE. Consistently, after depletion of the inhibitory Arpin, lamellipodia protrude faster and cells migrate faster. A major role of this inhibitory circuit, however, is to control directional persistence of migration. Indeed, Arpin depletion in both mammalian cells and Dictyostelium discoideum amoeba resulted in straighter trajectories, whereas Arpin microinjection in fish keratocytes, one of the most persistent systems of cell migration, induced these cells to turn. The coexistence of the Rac-Arpin-Arp2/3 inhibitory circuit with the Rac-WAVE-Arp2/3 activatory circuit can account for this conserved role of Arpin in steering cell migration.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Movimiento Celular/genética , Seudópodos/genética , Seudópodos/metabolismo , Transducción de Señal , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Dictyostelium/genética , Dictyostelium/metabolismo , Embrión no Mamífero , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Ratones , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pez Cebra/genética
7.
Br J Cancer ; 114(5): 545-53, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26867158

RESUMEN

BACKGROUND: The Arp2/3 complex is required for cell migration and invasion. The Arp2/3 complex and its activators, such as the WAVE complex, are deregulated in diverse cancers. Here we investigate the expression of Arpin, the Arp2/3 inhibitory protein that antagonises the WAVE complex. METHODS: We used qRT-PCR and reverse phase protein arrays in a patient cohort with known clinical parameters and outcome, immunofluorescence in breast biopsy cryosections and breast cancer cell lines. RESULTS: Arpin was downregulated at the mRNA and protein levels in mammary carcinoma cells. Arpin mRNA downregulation was associated with poor metastasis-free survival (MFS) on univariate analysis (P=0.022). High expression of the NCKAP1 gene that encodes a WAVE complex subunit was also associated with poor MFS on univariate analysis (P=0.0037) and was mutually exclusive with Arpin low. Arpin low or NCKAP1 high was an independent prognosis factor on multivariate analysis (P=0.0012) and was strongly associated with poor MFS (P=0.000064). CONCLUSIONS: Loss of the Arp2/3 inhibitory protein Arpin produces a similar poor outcome in breast cancer as high expression of the NCKAP1 subunit of the Arp2/3 activatory WAVE complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Mama/genética , Carcinoma/genética , Proteínas Portadoras/genética , Regulación hacia Abajo , ARN Mensajero/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenoma/genética , Adenoma/metabolismo , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma/metabolismo , Carcinoma/patología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Supervivencia sin Enfermedad , Receptor alfa de Estrógeno/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Persona de Mediana Edad , Metástasis de la Neoplasia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pronóstico , Análisis por Matrices de Proteínas , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Carga Tumoral
8.
Cells ; 13(1)2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38201309

RESUMEN

The formation of specific cellular protrusions, plasma membrane blebs, underlies the amoeboid mode of cell motility, which is characteristic for free-living amoebae and leukocytes, and can also be adopted by stem and tumor cells to bypass unfavorable migration conditions and thus facilitate their long-distance migration. Not all cells are equally prone to bleb formation. We have previously shown that membrane blebbing can be experimentally induced in a subset of HT1080 fibrosarcoma cells, whereas other cells in the same culture under the same conditions retain non-blebbing mesenchymal morphology. Here we show that this heterogeneity is associated with the distribution of vimentin intermediate filaments (VIFs). Using different approaches to alter the VIF organization, we show that blebbing activity is biased toward cell edges lacking abundant VIFs, whereas the VIF-rich regions of the cell periphery exhibit low blebbing activity. This pattern is observed both in interphase fibroblasts, with and without experimentally induced blebbing, and during mitosis-associated blebbing. Moreover, the downregulation of vimentin expression or displacement of VIFs away from the cell periphery promotes blebbing even in cells resistant to bleb-inducing treatments. Thus, we reveal a new important function of VIFs in cell physiology that involves the regulation of non-apoptotic blebbing essential for amoeboid cell migration and mitosis.


Asunto(s)
Filamentos Intermedios , Vimentina , Movimiento Celular , Citoplasma , Membrana Celular
9.
J Cell Sci ; 124(Pt 20): 3414-27, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22010197

RESUMEN

The Scar/Wave complex (SWC) generates lamellipodia through Arp2/3-dependent polymerisation of branched actin networks. In order to identify new SWC regulators, we conducted a screen in Drosophila cells combining proteomics with functional genomics. This screen identified Clathrin heavy chain (CHC) as a protein that binds to the SWC and whose depletion affects lamellipodium formation. This role of CHC in lamellipodium formation can be uncoupled from its role in membrane trafficking by several experimental approaches. Furthermore, CHC is detected in lamellipodia in the absence of the adaptor and accessory proteins of endocytosis. We found that CHC overexpression decreased membrane recruitment of the SWC, resulting in reduced velocity of protrusions and reduced cell migration. By contrast, when CHC was targeted to the membrane by fusion to a myristoylation sequence, we observed an increase in membrane recruitment of the SWC, protrusion velocity and cell migration. Together these data suggest that, in addition to its classical role in membrane trafficking, CHC brings the SWC to the plasma membrane, thereby controlling lamellipodium formation.


Asunto(s)
Clatrina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Microfilamentos/metabolismo , Seudópodos/metabolismo , Animales , Movimiento Celular/genética , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/patología , Clatrina/genética , Drosophila , Proteínas de Drosophila/genética , Células HeLa , Humanos , Proteínas de Microfilamentos/genética , Unión Proteica/genética , Transporte de Proteínas/genética , Proteómica , Seudópodos/patología , Eliminación de Secuencia/genética , Transgenes/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
10.
Int Rev Cell Mol Biol ; 356: 197-256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33066874

RESUMEN

During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular , Modelos Biológicos , Neoplasias/metabolismo , Animales , Humanos , Metástasis de la Neoplasia , Neoplasias/patología
11.
Cell Motil Cytoskeleton ; 65(9): 734-46, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18615701

RESUMEN

Interplay of two cytoskeletal systems--microfilaments and microtubules is essential for directional cell movement. To better understand the role of those cytoskeletal systems in polarization of cells, rat fibroblasts were incubated with drugs inhibiting activity of myosin II: blebbistatin and Y-27632. Both drugs led to disappearance of actin-myosin bundles and mature focal cell-matrix adhesions but did not affect polarization and directional motility. The rate of motility even increased after inhibitor treatment. The characteristic feature of inhibitor-treated fibroblasts was collapse of the cytoplasm accompanied by bundling of microtubules that led to transformation of lamellae into long immobile tails. The only exception was the leading anterior lamella which was not transformed into the tail and supported directional movement of the cell. The tail at the cell rear determined the position of anterior lamella and direction of locomotion. Depolymerization of microtubules by colcemid stopped directional locomotion of inhibitor-treated cells. These data show that integrity of the microtubular system provides the basic mechanism of polarization and orientation which is only modified by interactions with actin-myosin system and cell-substrate adhesions. We suggest that the position of bundled tail microtubules and dispersed microtubules in leading lamella determine polarization in cells lacking stress fibers and focal adhesions. Thus, polarization is based on microtubule-dependent mechanisms both in non-contractile and contractile cells. These mechanisms could switch dependent on circumstances as fibroblasts may acquire non-contractile phenotype, not only after direct inhibition of myosin II but also in certain conditions of microenvironment.


Asunto(s)
Actinas/metabolismo , Amidas/farmacología , Polaridad Celular/efectos de los fármacos , Fibroblastos/citología , Miosina Tipo II/antagonistas & inhibidores , Piridinas/farmacología , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Demecolcina/farmacología , Fibroblastos/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Microtúbulos/efectos de los fármacos , Modelos Biológicos , Miosina Tipo II/metabolismo , Ratas , Cicatrización de Heridas/efectos de los fármacos
12.
J Cell Biol ; 218(2): 445-454, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30541746

RESUMEN

Membrane blebbing accompanies various cellular processes, including cytokinesis, apoptosis, and cell migration, especially invasive migration of cancer cells. Blebs are extruded by intracellular pressure and are initially cytoskeleton-free, but they subsequently assemble the cytoskeleton, which can drive bleb retraction. Despite increasing appreciation of physiological significance of blebbing, the molecular and, especially, structural mechanisms controlling bleb dynamics are incompletely understood. We induced membrane blebbing in human HT1080 fibrosarcoma cells by inhibiting the Arp2/3 complex. Using correlative platinum replica electron microscopy, we characterize cytoskeletal architecture of the actin cortex in cells during initiation of blebbing and in blebs at different stages of their expansion-retraction cycle. The transition to blebbing in these conditions occurred through an intermediate filopodial stage, whereas bleb initiation was biased toward filopodial bases, where the cytoskeleton exhibited local weaknesses. Different stages of the bleb life cycle (expansion, pausing, and retraction) are characterized by specific features of cytoskeleton organization that provide implications about mechanisms of cytoskeleton assembly and bleb retraction.


Asunto(s)
Citoesqueleto de Actina , Estructuras de la Membrana Celular , Seudópodos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Línea Celular Tumoral , Estructuras de la Membrana Celular/metabolismo , Estructuras de la Membrana Celular/ultraestructura , Humanos , Seudópodos/metabolismo , Seudópodos/ultraestructura
13.
Methods Mol Biol ; 1749: 21-27, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29525987

RESUMEN

During the last few years, significant attention has been given to the plasticity of cell migration, i.e., the ability of individual cell to switch between different motility modes, in particular between mesenchymal and amoeboid motilities. This phenomenon is called the mesenchymal-to-amoeboid transition (MAT). Such a plasticity of cell migration is a mechanism, by which cancer cells can adapt their migration mode to different microenvironments and thus it may promote tumor dissemination. It was shown that interventions at certain regulatory points of mesenchymal motility as well as alterations of environmental conditions can trigger MAT. One of the approaches to induce MAT is to mechanically confine cells and one of the simplest ways to achieve this is to cultivate cells under agarose. This method does not require any special tool, is easily reproducible and allows cell tracking by videomicroscopy. We describe here a protocol, where MAT is associated with chemotaxis.


Asunto(s)
Movimiento Celular/fisiología , Mesodermo/patología , Línea Celular Tumoral , Humanos , Microscopía por Video , Invasividad Neoplásica/patología
14.
Eur J Cell Biol ; 85(3-4): 165-73, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16360240

RESUMEN

Initial integrin-mediated cell-matrix adhesions (focal complexes) appear underneath the lamellipodia, in the regions of the "fast" centripetal flow driven by actin polymerization. Once formed, these adhesions convert the flow behind them into a "slow", myosin II-driven mode. Some focal complexes then turn into elongated focal adhesions (FAs) associated with contractile actomyosin bundles (stress fibers). Myosin II inhibition does not suppress formation of focal complexes but blocks their conversion into mature FAs and further FA growth. Application of external pulling force promotes FA growth even under conditions when myosin II activity is blocked. Thus, individual FAs behave as mechanosensors responding to the application of force by directional assembly. We proposed a thermodynamic model for the mechanosensitivity of FAs, taking into account that an elastic molecular aggregate subject to pulling forces tends to grow in the direction of force application by incorporating additional subunits. This simple model can explain a variety of processes typical of FA behavior. Assembly of FAs is triggered by the small G-protein Rho via activation of two major targets, Rho-associated kinase (ROCK) and the formin homology protein, Dia1. ROCK controls creation of myosin II-driven forces, while Dia1 is involved in the response of FAs to these forces. Expression of the active form of Dia1, allows the external force-induced assembly of mature FAs, even in conditions when Rho is inhibited. Conversely, downregulation of Dia1 by siRNA prevents FA maturation even if Rho is activated. Dia1 and other formins cap barbed (fast growing) ends of actin filaments, allowing insertion of the new actin monomers. We suggested a novel mechanism of such "leaky" capping based on an assumption of elasticity of the formin/barbed end complex. Our model predicts that formin-mediated actin polymerization should be greatly enhanced by application of external pulling force. Thus, the formin-actin complex might represent an elementary mechanosensing device responding to force by enhancement of actin assembly. In addition to its role in actin polymerization, Dia1 seems to be involved in formation of links between actin filaments and microtubules affecting microtubule dynamics. Alpha-tubulin deacetylase HDAC6 cooperates with Dia1 in formation of such links. Since microtubules are known to promote FA disassembly, the Dia1-mediated effect on microtubule dynamics may possibly play a role in the negative feedback loop controlling size and turnover of FAs.


Asunto(s)
Adhesiones Focales/fisiología , Mecanotransducción Celular , Citoesqueleto de Actina/fisiología , Actinas/fisiología , Animales , Proteínas Portadoras/metabolismo , Humanos , Cinética , Mecanotransducción Celular/fisiología , Proteínas de Microfilamentos/metabolismo , Microtúbulos/fisiología , Modelos Biológicos
15.
PLoS One ; 3(9): e3234, 2008 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-18800171

RESUMEN

Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base.


Asunto(s)
Actinas/química , Adhesiones Focales/metabolismo , Células 3T3 , Citoesqueleto de Actina/metabolismo , Animales , Movimiento Celular , Citocalasina D/química , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Melanoma Experimental , Ratones , Microscopía/métodos , Microscopía de Contraste de Fase , Polilisina/química , Ratas
16.
Exp Cell Res ; 312(11): 2066-73, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16624288

RESUMEN

Expression of activated Ras causes an increase in intracellular content of reactive oxygen species (ROS). To determine the role of ROS up-regulation in mediation of Ras-induced morphological transformation and increased cell motility, we studied the effects of hydrogen peroxide and antioxidant NAC on morphology of REF52 rat fibroblasts and their ability to migrate into the wound in vitro. Treatment with low dosages of hydrogen peroxide leading to 1.5- to 2-fold increase in intracellular ROS levels induced changes of cell shape, actin cytoskeleton organization, cell adhesions and migration resembling those in Ras-transformed cells. On the other hand, treatment with NAC attenuating ROS up-regulation in cells with conditional or constitutive expression of activated Ras led to partial reversion of morphological transformation and decreased cell motility. The effect of ROS on cell morphology and motility probably results from modulation of activity of Rac1, Rho, and cofilin proteins playing a key role in regulation of actin dynamics. The obtained data are consistent with the idea that ROS up-regulation mediates two key events in Ras-induced morphological transformation and cell motility: it is responsible for Rac1 activation and is necessary (though insufficient) for realization of Ras-induced cofilin dephosphorylation.


Asunto(s)
Movimiento Celular/fisiología , Forma de la Célula/fisiología , Genes ras/fisiología , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba , Factores Despolimerizantes de la Actina/metabolismo , Animales , Línea Celular , Ratas , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA