Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biodivers Data J ; 10: e89481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761617

RESUMEN

Background: Biodiversity is the assortment of life on earth covering evolutionary, ecological, biological, and social forms. To preserve life in all its variety and richness, it is imperative to monitor the current state of biodiversity and its change over time and to understand the forces driving it. This need has resulted in numerous works being published in this field. With this, a large amount of textual data (publications) and metadata (e.g. dataset description) has been generated. To support the management and analysis of these data, two techniques from computer science are of interest, namely Named Entity Recognition (NER) and Relation Extraction (RE). While the former enables better content discovery and understanding, the latter fosters the analysis by detecting connections between entities and, thus, allows us to draw conclusions and answer relevant domain-specific questions. To automatically predict entities and their relations, machine/deep learning techniques could be used. The training and evaluation of those techniques require labelled corpora. New information: In this paper, we present two gold-standard corpora for Named Entity Recognition (NER) and Relation Extraction (RE) generated from biodiversity datasets metadata and abstracts that can be used as evaluation benchmarks for the development of new computer-supported tools that require machine learning or deep learning techniques. These corpora are manually labelled and verified by biodiversity experts. In addition, we explain the detailed steps of constructing these datasets. Moreover, we demonstrate the underlying ontology for the classes and relations used to annotate such corpora.

2.
Biodivers Data J ; 9: e72901, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34785977

RESUMEN

BACKGROUND: Obtaining fit-to-use data associated with diverse aspects of biodiversity, ecology and environment is challenging since often it is fragmented, sub-optimally managed and available in heterogeneous formats. Recently, with the universal acceptance of the FAIR data principles, the requirements and standards of data publications have changed substantially. Researchers are encouraged to manage the data as per the FAIR data principles and ensure that the raw data, metadata, processed data, software, codes and associated material are securely stored and the data be made available with the completion of the research. NEW INFORMATION: We have developed BEXIS2 as an open-source community-driven web-based research data management system to support research data management needs of mid to large-scale research projects with multiple sub-projects and up to several hundred researchers. BEXIS2 is a modular and extensible system providing a range of functions to realise the complete data lifecycle from data structure design to data collection, data discovery, dissemination, integration, quality assurance and research planning. It is an extensible and customisable system that allows for the development of new functions and customisation of its various components from database schemas to the user interface layout, elements and look and feel.During the development of BEXIS2, we aimed to incorporate key aspects of what is encoded in FAIR data principles. To investigate the extent to which BEXIS2 conforms to these principles, we conducted the self-assessment using the FAIR indicators, definitions and criteria provided in the FAIR Data Maturity Model. Even though the FAIR data maturity model is developed initially to judge the conformance of datasets, the self-assessment results indicated that BEXIS2 remarkably conforms and supports FAIR indicators. BEXIS2 strongly conforms to the indicators Findability and Accessibility. The indicator Interoperability is moderately supported as of now; however, for many of the lesssupported facets, we have concrete plans for improvement. Reusability (as defined by the FAIR data principles) is partially achieved.This paper also illustrates community deployment examples of the BEXIS2 instances as success stories to exemplify its capacity to meet the biodiversity and ecological data management needs of differently sized projects and serve as an organisational research data management system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA