Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(W1): W180-W190, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216602

RESUMEN

Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies.


Asunto(s)
Programas Informáticos , Transcriptoma , Animales , Humanos , Ratones , Redes y Vías Metabólicas , Metabolómica , Modelos Biológicos
2.
Genome Res ; 31(10): 1867-1884, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34301623

RESUMEN

The metabolic heterogeneity and metabolic interplay between cells are known as significant contributors to disease treatment resistance. However, with the lack of a mature high-throughput single-cell metabolomics technology, we are yet to establish systematic understanding of the intra-tissue metabolic heterogeneity and cooperative mechanisms. To mitigate this knowledge gap, we developed a novel computational method, namely, single-cell flux estimation analysis (scFEA), to infer the cell-wise fluxome from single-cell RNA-sequencing (scRNA-seq) data. scFEA is empowered by a systematically reconstructed human metabolic map as a factor graph, a novel probabilistic model to leverage the flux balance constraints on scRNA-seq data, and a novel graph neural network-based optimization solver. The intricate information cascade from transcriptome to metabolome was captured using multilayer neural networks to capitulate the nonlinear dependency between enzymatic gene expressions and reaction rates. We experimentally validated scFEA by generating an scRNA-seq data set with matched metabolomics data on cells of perturbed oxygen and genetic conditions. Application of scFEA on this data set showed the consistency between predicted flux and the observed variation of metabolite abundance in the matched metabolomics data. We also applied scFEA on five publicly available scRNA-seq and spatial transcriptomics data sets and identified context- and cell group-specific metabolic variations. The cell-wise fluxome predicted by scFEA empowers a series of downstream analyses including identification of metabolic modules or cell groups that share common metabolic variations, sensitivity evaluation of enzymes with regards to their impact on the whole metabolic flux, and inference of cell-tissue and cell-cell metabolic communications.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Perfilación de la Expresión Génica/métodos , Redes Neurales de la Computación , RNA-Seq , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
3.
Sensors (Basel) ; 23(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37571732

RESUMEN

In order for a country's economy to grow, agricultural development is essential. Plant diseases, however, severely hamper crop growth rate and quality. In the absence of domain experts and with low contrast information, accurate identification of these diseases is very challenging and time-consuming. This leads to an agricultural management system in need of a method for automatically detecting disease at an early stage. As a consequence of dimensionality reduction, CNN-based models use pooling layers, which results in the loss of vital information, including the precise location of the most prominent features. In response to these challenges, we propose a fine-tuned technique, GreenViT, for detecting plant infections and diseases based on Vision Transformers (ViTs). Similar to word embedding, we divide the input image into smaller blocks or patches and feed these to the ViT sequentially. Our approach leverages the strengths of ViTs in order to overcome the problems associated with CNN-based models. Experiments on widely used benchmark datasets were conducted to evaluate the proposed GreenViT performance. Based on the obtained experimental outcomes, the proposed technique outperforms state-of-the-art (SOTA) CNN models for detecting plant diseases.

4.
Crit Rev Clin Lab Sci ; 59(8): 573-585, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35738909

RESUMEN

The urocortins are polypeptides belonging to the corticotropin-releasing hormone family, known to modulate stress responses in mammals. Stress, whether induced physically or psychologically, is an underlying cause or consequence of numerous clinical syndromes. Identifying biological markers associated with the homeostatic regulation of stress could provide a clinical laboratory approach for the management of stress-related disorders. The neuropeptide, urocortin 3 (UCN3), and the corticotropin-releasing hormone receptor 2 (CRHR2) constitute a regulatory axis known to mediate stress homeostasis. Dysregulation of this peptide/receptor axis is believed to play a role in several clinical conditions including post-traumatic stress, sleep apnea, cardiovascular disease, and other health problems related to stress. Understanding the physiology and measurement of the UCN3/CRHR2 axis is important for establishing a viable clinical laboratory diagnostic. In this article, we focus on evidence supporting the role of UCN3 and its receptor in stress-related clinical syndromes. We also provide insight into the measurements of UCN3 in blood and urine. These potential biomarkers provide new opportunities for clinical research and applications of laboratory medicine diagnostics in stress management.


Asunto(s)
Hormona Liberadora de Corticotropina , Urocortinas , Humanos , Proteínas Portadoras , Hormona Liberadora de Corticotropina/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Síndrome , Urocortinas/metabolismo
5.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35214448

RESUMEN

The lumbar spine plays a very important role in our load transfer and mobility. Vertebrae localization and segmentation are useful in detecting spinal deformities and fractures. Understanding of automated medical imagery is of main importance to help doctors in handling the time-consuming manual or semi-manual diagnosis. Our paper presents the methods that will help clinicians to grade the severity of the disease with confidence, as the current manual diagnosis by different doctors has dissimilarity and variations in the analysis of diseases. In this paper we discuss the lumbar spine localization and segmentation which help for the analysis of lumbar spine deformities. The lumber spine is localized using YOLOv5 which is the fifth variant of the YOLO family. It is the fastest and the lightest object detector. Mean average precision (mAP) of 0.975 is achieved by YOLOv5. To diagnose the lumbar lordosis, we correlated the angles with region area that is computed from the YOLOv5 centroids and obtained 74.5% accuracy. Cropped images from YOLOv5 bounding boxes are passed through HED U-Net, which is a combination of segmentation and edge detection frameworks, to obtain the segmented vertebrae and its edges. Lumbar lordortic angles (LLAs) and lumbosacral angles (LSAs) are found after detecting the corners of vertebrae using a Harris corner detector with very small mean errors of 0.29° and 0.38°, respectively. This paper compares the different object detectors used to localize the vertebrae, the results of two methods used to diagnose the lumbar deformity, and the results with other researchers.


Asunto(s)
Aprendizaje Profundo , Vértebras Lumbares/diagnóstico por imagen , Región Lumbosacra , Columna Vertebral
6.
Sensors (Basel) ; 22(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35214568

RESUMEN

Human beings tend to incrementally learn from the rapidly changing environment without comprising or forgetting the already learned representations. Although deep learning also has the potential to mimic such human behaviors to some extent, it suffers from catastrophic forgetting due to which its performance on already learned tasks drastically decreases while learning about newer knowledge. Many researchers have proposed promising solutions to eliminate such catastrophic forgetting during the knowledge distillation process. However, to our best knowledge, there is no literature available to date that exploits the complex relationships between these solutions and utilizes them for the effective learning that spans over multiple datasets and even multiple domains. In this paper, we propose a continual learning objective that encompasses mutual distillation loss to understand such complex relationships and allows deep learning models to effectively retain the prior knowledge while adapting to the new classes, new datasets, and even new applications. The proposed objective was rigorously tested on nine publicly available, multi-vendor, and multimodal datasets that span over three applications, and it achieved the top-1 accuracy of 0.9863% and an F1-score of 0.9930.


Asunto(s)
Redes Neurales de la Computación , Humanos
7.
Sensors (Basel) ; 22(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35408423

RESUMEN

A vehicular ad hoc network (VANET) is an emerging technology that improves road safety, traffic efficiency, and passenger comfort. VANETs' applications rely on co-operativeness among vehicles by periodically sharing their context information, such as position speed and acceleration, among others, at a high rate due to high vehicles mobility. However, rogue nodes, which exploit the co-operativeness feature and share false messages, can disrupt the fundamental operations of any potential application and cause the loss of people's lives and properties. Unfortunately, most of the current solutions cannot effectively detect rogue nodes due to the continuous context change and the inconsideration of dynamic data uncertainty during the identification. Although there are few context-aware solutions proposed for VANET, most of these solutions are data-centric. A vehicle is considered malicious if it shares false or inaccurate messages. Such a rule is fuzzy and not consistently accurate due to the dynamic uncertainty of the vehicular context, which leads to a poor detection rate. To this end, this study proposed a fuzzy-based context-aware detection model to improve the overall detection performance. A fuzzy inference system is constructed to evaluate the vehicles based on their generated information. The output of the proposed fuzzy inference system is used to build a dynamic context reference based on the proposed fuzzy inference system. Vehicles are classified into either honest or rogue nodes based on the deviation of their evaluation scores calculated using the proposed fuzzy inference system from the context reference. Extensive experiments were carried out to evaluate the proposed model. Results show that the proposed model outperforms the state-of-the-art models. It achieves a 7.88% improvement in the overall performance, while a 16.46% improvement is attained for detection rate compared to the state-of-the-art model. The proposed model can be used to evict the rogue nodes, and thus improve the safety and traffic efficiency of crewed or uncrewed vehicles designed for different environments, land, naval, or air.

8.
Sensors (Basel) ; 22(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36298186

RESUMEN

Diabetic retinopathy (DR) is a major health problem that can lead to vision loss if not treated early. In this study, a three-step system for DR detection utilizing optical coherence tomography (OCT) is presented. First, the proposed system segments the retinal layers from the input OCT images. Second, 3D features are extracted from each retinal layer that include the first-order reflectivity and the 3D thickness of the individual OCT layers. Finally, backpropagation neural networks are used to classify OCT images. Experimental studies on 188 cases confirm the advantages of the proposed system over related methods, achieving an accuracy of 96.81%, using the leave-one-subject-out (LOSO) cross-validation. These outcomes show the potential of the suggested method for DR detection using OCT images.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Retinopatía Diabética/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Retina/diagnóstico por imagen , Redes Neurales de la Computación
9.
Sensors (Basel) ; 22(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35009725

RESUMEN

Due to the wide availability and usage of connected devices in Internet of Things (IoT) networks, the number of attacks on these networks is continually increasing. A particularly serious and dangerous type of attack in the IoT environment is the botnet attack, where the attackers can control the IoT systems to generate enormous networks of "bot" devices for generating malicious activities. To detect this type of attack, several Intrusion Detection Systems (IDSs) have been proposed for IoT networks based on machine learning and deep learning methods. As the main characteristics of IoT systems include their limited battery power and processor capacity, maximizing the efficiency of intrusion detection systems for IoT networks is still a research challenge. It is important to provide efficient and effective methods that use lower computational time and have high detection rates. This paper proposes an aggregated mutual information-based feature selection approach with machine learning methods to enhance detection of IoT botnet attacks. In this study, the N-BaIoT benchmark dataset was used to detect botnet attack types using real traffic data gathered from nine commercial IoT devices. The dataset includes binary and multi-class classifications. The feature selection method incorporates Mutual Information (MI) technique, Principal Component Analysis (PCA) and ANOVA f-test at finely-granulated detection level to select the relevant features for improving the performance of IoT Botnet classifiers. In the classification step, several ensemble and individual classifiers were used, including Random Forest (RF), XGBoost (XGB), Gaussian Naïve Bayes (GNB), k-Nearest Neighbor (k-NN), Logistic Regression (LR) and Support Vector Machine (SVM). The experimental results showed the efficiency and effectiveness of the proposed approach, which outperformed other techniques using various evaluation metrics.


Asunto(s)
Internet de las Cosas , Teorema de Bayes , Aprendizaje Automático , Análisis de Componente Principal , Máquina de Vectores de Soporte
10.
Sensors (Basel) ; 21(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34502710

RESUMEN

Autism spectrum disorder (ASD) is a neurodegenerative disorder characterized by lingual and social disabilities. The autism diagnostic observation schedule is the current gold standard for ASD diagnosis. Developing objective computer aided technologies for ASD diagnosis with the utilization of brain imaging modalities and machine learning is one of main tracks in current studies to understand autism. Task-based fMRI demonstrates the functional activation in the brain by measuring blood oxygen level-dependent (BOLD) variations in response to certain tasks. It is believed to hold discriminant features for autism. A novel computer aided diagnosis (CAD) framework is proposed to classify 50 ASD and 50 typically developed toddlers with the adoption of CNN deep networks. The CAD system includes both local and global diagnosis in a response to speech task. Spatial dimensionality reduction with region of interest selection and clustering has been utilized. In addition, the proposed framework performs discriminant feature extraction with continuous wavelet transform. Local diagnosis on cingulate gyri, superior temporal gyrus, primary auditory cortex and angular gyrus achieves accuracies ranging between 71% and 80% with a four-fold cross validation technique. The fused global diagnosis achieves an accuracy of 86% with 82% sensitivity, 92% specificity. A brain map indicating ASD severity level for each brain area is created, which contributes to personalized diagnosis and treatment plans.


Asunto(s)
Trastorno del Espectro Autista , Imagen por Resonancia Magnética , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Análisis de Ondículas
11.
Sensors (Basel) ; 21(16)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34450923

RESUMEN

A new segmentation technique is introduced for delineating the lung region in 3D computed tomography (CT) images. To accurately model the distribution of Hounsfield scale values within both chest and lung regions, a new probabilistic model is developed that depends on a linear combination of Gaussian (LCG). Moreover, we modified the conventional expectation-maximization (EM) algorithm to be run in a sequential way to estimate both the dominant Gaussian components (one for the lung region and one for the chest region) and the subdominant Gaussian components, which are used to refine the final estimated joint density. To estimate the marginal density from the mixed density, a modified k-means clustering approach is employed to classify the Gaussian subdominant components to determine which components belong properly to a lung and which components belong to a chest. The initial segmentation, based on the LCG-model, is then refined by the imposition of 3D morphological constraints based on a 3D Markov-Gibbs random field (MGRF) with analytically estimated potentials. The proposed approach was tested on CT data from 32 coronavirus disease 2019 (COVID-19) patients. Segmentation quality was quantitatively evaluated using four metrics: Dice similarity coefficient (DSC), overlap coefficient, 95th-percentile bidirectional Hausdorff distance (BHD), and absolute lung volume difference (ALVD), and it achieved 95.67±1.83%, 91.76±3.29%, 4.86±5.01, and 2.93±2.39, respectively. The reported results showed the capability of the proposed approach to accurately segment healthy lung tissues in addition to pathological lung tissues caused by COVID-19, outperforming four current, state-of-the-art deep learning-based lung segmentation approaches.


Asunto(s)
COVID-19 , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , SARS-CoV-2 , Tomografía Computarizada por Rayos X
12.
Sensors (Basel) ; 21(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34450898

RESUMEN

Uveitis is one of the leading causes of severe vision loss that can lead to blindness worldwide. Clinical records show that early and accurate detection of vitreous inflammation can potentially reduce the blindness rate. In this paper, a novel framework is proposed for automatic quantification of the vitreous on optical coherence tomography (OCT) with particular application for use in the grading of vitreous inflammation. The proposed pipeline consists of two stages, vitreous region segmentation followed by a neural network classifier. In the first stage, the vitreous region is automatically segmented using a U-net convolutional neural network (U-CNN). For the input of U-CNN, we utilized three novel image descriptors to account for the visual appearance similarity of the vitreous region and other tissues. Namely, we developed an adaptive appearance-based approach that utilizes a prior shape information, which consisted of a labeled dataset of the manually segmented images. This image descriptor is adaptively updated during segmentation and is integrated with the original greyscale image and a distance map image descriptor to construct an input fused image for the U-net segmentation stage. In the second stage, a fully connected neural network (FCNN) is proposed as a classifier to assess the vitreous inflammation severity. To achieve this task, a novel discriminatory feature of the segmented vitreous region is extracted. Namely, the signal intensities of the vitreous are represented by a cumulative distribution function (CDF). The constructed CDFs are then used to train and test the FCNN classifier for grading (grade from 0 to 3). The performance of the proposed pipeline is evaluated on a dataset of 200 OCT images. Our segmentation approach documented a higher performance than related methods, as evidenced by the Dice coefficient of 0.988 ± 0.01 and Hausdorff distance of 0.0003 mm ± 0.001 mm. On the other hand, the FCNN classification is evidenced by its average accuracy of 86%, which supports the benefits of the proposed pipeline as an aid for early and objective diagnosis of uvea inflammation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Uveítis , Humanos , Redes Neurales de la Computación , Tomografía de Coherencia Óptica , Uveítis/diagnóstico por imagen
13.
Sensors (Basel) ; 21(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070290

RESUMEN

Background and Objective: The use of computer-aided detection (CAD) systems can help radiologists make objective decisions and reduce the dependence on invasive techniques. In this study, a CAD system that detects and identifies prostate cancer from diffusion-weighted imaging (DWI) is developed. Methods: The proposed system first uses non-negative matrix factorization (NMF) to integrate three different types of features for the accurate segmentation of prostate regions. Then, discriminatory features in the form of apparent diffusion coefficient (ADC) volumes are estimated from the segmented regions. The ADC maps that constitute these volumes are labeled by a radiologist to identify the ADC maps with malignant or benign tumors. Finally, transfer learning is used to fine-tune two different previously-trained convolutional neural network (CNN) models (AlexNet and VGGNet) for detecting and identifying prostate cancer. Results: Multiple experiments were conducted to evaluate the accuracy of different CNN models using DWI datasets acquired at nine distinct b-values that included both high and low b-values. The average accuracy of AlexNet at the nine b-values was 89.2±1.5% with average sensitivity and specificity of 87.5±2.3% and 90.9±1.9%. These results improved with the use of the deeper CNN model (VGGNet). The average accuracy of VGGNet was 91.2±1.3% with sensitivity and specificity of 91.7±1.7% and 90.1±2.8%. Conclusions: The results of the conducted experiments emphasize the feasibility and accuracy of the developed system and the improvement of this accuracy using the deeper CNN.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias de la Próstata , Algoritmos , Humanos , Aprendizaje Automático , Masculino , Redes Neurales de la Computación , Neoplasias de la Próstata/diagnóstico por imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Sensors (Basel) ; 21(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34300667

RESUMEN

Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management. Informed consent was obtained from a total of 140 biopsy-proven patients to participate in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired, and renal tumors were segmented for all patients to allow the extraction of discriminating imaging features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-in/wash-out slopes to estimate the functional features by quantifying enhancement variations across different CE-CT phases. These features were subsequently combined and processed using a two-stage multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype as well. Using the combined features and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a sensitivity of 95.3%±2.0%, a specificity of 99.9%±0.4%, and Dice similarity coefficient of 0.98±0.01 in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6%±5.0% in discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence, integrating morphological, textural, and functional features enhances the diagnostic performance, making the proposal a reliable noninvasive diagnostic tool for renal tumors.


Asunto(s)
Angiomiolipoma , Carcinoma de Células Renales , Neoplasias Renales , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Renales/diagnóstico por imagen , Diagnóstico por Computador , Diagnóstico Diferencial , Femenino , Humanos , Neoplasias Renales/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Sensors (Basel) ; 21(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34450858

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder that targets the central nervous system (CNS). Statistics show that more than five million people in America face this disease. Several factors hinder diagnosis at an early stage, in particular, the divergence of 10-15 years between the onset of the underlying neuropathological changes and patients becoming symptomatic. This study surveyed patients with mild cognitive impairment (MCI), who were at risk of conversion to AD, with a local/regional-based computer-aided diagnosis system. The described system allowed for visualization of the disorder's effect on cerebral cortical regions individually. The CAD system consists of four steps: (1) preprocess the scans and extract the cortex, (2) reconstruct the cortex and extract shape-based features, (3) fuse the extracted features, and (4) perform two levels of diagnosis: cortical region-based followed by global. The experimental results showed an encouraging performance of the proposed system when compared with related work, with a maximum accuracy of 86.30%, specificity 88.33%, and sensitivity 84.88%. Behavioral and cognitive correlations identified brain regions involved in language, executive function/cognition, and memory in MCI subjects, which regions are also involved in the neuropathology of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Computadores , Humanos , Lenguaje , Imagen por Resonancia Magnética
16.
J Digit Imaging ; 33(6): 1428-1442, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32968881

RESUMEN

Glaucoma is a progressive and deteriorating optic neuropathy that leads to visual field defects. The damage occurs as glaucoma is irreversible, so early and timely diagnosis is of significant importance. The proposed system employs the convolution neural network (CNN) for automatic segmentation of the retinal layers. The inner limiting membrane (ILM) and retinal pigmented epithelium (RPE) are used to calculate cup-to-disc ratio (CDR) for glaucoma diagnosis. The proposed system uses structure tensors to extract candidate layer pixels, and a patch across each candidate layer pixel is extracted, which is classified using CNN. The proposed framework is based upon VGG-16 architecture for feature extraction and classification of retinal layer pixels. The output feature map is merged into SoftMax layer for classification and produces probability map for central pixel of each patch and decides whether it is ILM, RPE, or background pixels. Graph search theory refines the extracted layers by interpolating the missing points, and these extracted ILM and RPE are finally used to compute CDR value and diagnose glaucoma. The proposed system is validated using a local dataset of optical coherence tomography images from 196 patients, including normal and glaucoma subjects. The dataset contains manually annotated ILM and RPE layers; manually extracted patches for ILM, RPE, and background pixels; CDR values; and eventually final finding related to glaucoma. The proposed system is able to extract ILM and RPE with a small absolute mean error of 6.03 and 5.56, respectively, and it finds CDR value within average range of ± 0.09 as compared with glaucoma expert. The proposed system achieves average sensitivity, specificity, and accuracies of 94.6, 94.07, and 94.68, respectively.


Asunto(s)
Glaucoma , Glaucoma/diagnóstico por imagen , Humanos , Redes Neurales de la Computación , Disco Óptico , Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica
18.
Front Med (Lausanne) ; 11: 1380405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741771

RESUMEN

Introduction: Non-melanoma skin cancer comprising Basal cell carcinoma (BCC), Squamous cell carcinoma (SCC), and Intraepidermal carcinoma (IEC) has the highest incidence rate among skin cancers. Intelligent decision support systems may address the issue of the limited number of subject experts and help in mitigating the parity of health services between urban centers and remote areas. Method: In this research, we propose a transformer-based model for the segmentation of histopathology images not only into inflammation and cancers such as BCC, SCC, and IEC but also to identify skin tissues and boundaries that are important in decision-making. Accurate segmentation of these tissue types will eventually lead to accurate detection and classification of non-melanoma skin cancer. The segmentation according to tissue types and their visual representation before classification enhances the trust of pathologists and doctors being relatable to how most pathologists approach this problem. The visualization of the confidence of the model in its prediction through uncertainty maps is also what distinguishes this study from most deep learning methods. Results: The evaluation of proposed system is carried out using publicly available dataset. The application of our proposed segmentation system demonstrated good performance with an F1 score of 0.908, mean intersection over union (mIoU) of 0.653, and average accuracy of 83.1%, advocating that the system can be used as a decision support system successfully and has the potential of subsequently maturing into a fully automated system. Discussion: This study is an attempt to automate the segmentation of the most occurring non-melanoma skin cancer using a transformer-based deep learning technique applied to histopathology skin images. Highly accurate segmentation and visual representation of histopathology images according to tissue types by the proposed system implies that the system can be used for skin-related routine pathology tasks including cancer and other anomaly detection, their classification, and measurement of surgical margins in the case of cancer cases.

19.
Diagnostics (Basel) ; 14(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38337771

RESUMEN

Ischemic heart condition is one of the most prevalent causes of death that can be treated more effectively and lead to fewer fatalities if identified early. Heart muscle fibrosis affects the diastolic and systolic function of the heart and is linked to unfavorable cardiovascular outcomes. Cardiac magnetic resonance (CMR) scarring, a risk factor for ischemic heart disease, may be accurately identified by magnetic resonance imaging (MRI) to recognize fibrosis. In the past few decades, numerous methods based on MRI have been employed to identify and categorize cardiac fibrosis. Because they increase the therapeutic advantages and the likelihood that patients will survive, developing these approaches is essential and has significant medical benefits. A brand-new method that uses MRI has been suggested to help with diagnosing. Advances in deep learning (DL) networks contribute to the early and accurate diagnosis of heart muscle fibrosis. This study introduces a new deep network known as FibrosisNet, which detects and classifies fibrosis if it is present. It includes some of 17 various series layers to achieve the fibrosis detection target. The introduced classification system is trained and evaluated for the best performance results. In addition, deep transfer-learning models are applied to the different famous convolution neural networks to find fibrosis detection architectures. The FibrosisNet architecture achieves an accuracy of 96.05%, a sensitivity of 97.56%, and an F1-Score of 96.54%. The experimental results show that FibrosisNet has numerous benefits and produces higher results than current state-of-the-art methods and other advanced CNN approaches.

20.
Sci Rep ; 14(1): 2434, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287062

RESUMEN

The increase in eye disorders among older individuals has raised concerns, necessitating early detection through regular eye examinations. Age-related macular degeneration (AMD), a prevalent condition in individuals over 45, is a leading cause of vision impairment in the elderly. This paper presents a comprehensive computer-aided diagnosis (CAD) framework to categorize fundus images into geographic atrophy (GA), intermediate AMD, normal, and wet AMD categories. This is crucial for early detection and precise diagnosis of age-related macular degeneration (AMD), enabling timely intervention and personalized treatment strategies. We have developed a novel system that extracts both local and global appearance markers from fundus images. These markers are obtained from the entire retina and iso-regions aligned with the optical disc. Applying weighted majority voting on the best classifiers improves performance, resulting in an accuracy of 96.85%, sensitivity of 93.72%, specificity of 97.89%, precision of 93.86%, F1 of 93.72%, ROC of 95.85%, balanced accuracy of 95.81%, and weighted sum of 95.38%. This system not only achieves high accuracy but also provides a detailed assessment of the severity of each retinal region. This approach ensures that the final diagnosis aligns with the physician's understanding of AMD, aiding them in ongoing treatment and follow-up for AMD patients.


Asunto(s)
Atrofia Geográfica , Degeneración Macular Húmeda , Humanos , Anciano , Fondo de Ojo , Retina , Degeneración Macular Húmeda/diagnóstico , Atrofia Geográfica/diagnóstico por imagen , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA