Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 311(5): G852-G858, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27758771

RESUMEN

Helicobacter pylori (H. pylori) induces chronic gastritis in humans, and infection can persist for decades. One H. pylori strain-specific constituent that augments disease risk is the cag pathogenicity island. The cag island encodes a type IV secretion system (T4SS) that translocates DNA into host cells. Toll-like receptor 9 (TLR9) is an innate immune receptor that detects hypo-methylated CpG DNA motifs. In this study, we sought to define the role of the H. pylori cag T4SS on TLR9-mediated responses in vivo. H. pylori strain PMSS1 or its cagE- mutant, which fails to assemble a T4SS, were used to infect wild-type or Tlr9-/- C57BL/6 mice. PMSS1-infected Tlr9-/- mice developed significantly higher levels of inflammation, despite similar levels of colonization density, compared with PMSS1-infected wild-type mice. These changes were cag dependent, as both mouse genotypes infected with the cagE- mutant only developed minimal inflammation. Tlr9-/- genotypes did not alter the microbial phenotypes of in vivo-adapted H. pylori strains; therefore, we examined host immunological responses. There were no differences in levels of TH1 or TH2 cytokines in infected mice when stratified by host genotype. However, gastric mucosal levels of IL-17 were significantly increased in infected Tlr9-/- mice compared with infected wild-type mice, and H. pylori infection of IL-17A-/- mice concordantly led to significantly decreased levels of gastritis. Thus loss of Tlr9 selectively augments the intensity of IL-17-driven immune responses to H. pylori in a cag T4SS-dependent manner. These results suggest that H. pylori utilizes the cag T4SS to manipulate the intensity of the host immune response.


Asunto(s)
Infecciones por Helicobacter/metabolismo , Inflamación/metabolismo , Receptor Toll-Like 9/metabolismo , Animales , Mucosa Gástrica/metabolismo , Helicobacter pylori , Interleucina-17/genética , Interleucina-17/metabolismo , Ratones , Ratones Noqueados , Receptor Toll-Like 9/genética
2.
mSystems ; 9(1): e0109823, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38059647

RESUMEN

Helicobacter pylori colonization of the human stomach is a strong risk factor for gastric cancer. To investigate H. pylori-induced gastric molecular alterations, we used a Mongolian gerbil model of gastric carcinogenesis. Histologic evaluation revealed varying levels of atrophic gastritis (a premalignant condition characterized by parietal and chief cell loss) in H. pylori-infected animals, and transcriptional profiling revealed a loss of markers for these cell types. We then assessed the spatial distribution and relative abundance of proteins in the gastric tissues using imaging mass spectrometry and liquid chromatography with tandem mass spectrometry. We detected striking differences in the protein content of corpus and antrum tissues. Four hundred ninety-two proteins were preferentially localized to the corpus in uninfected animals. The abundance of 91 of these proteins was reduced in H. pylori-infected corpus tissues exhibiting atrophic gastritis compared with infected corpus tissues exhibiting non-atrophic gastritis or uninfected corpus tissues; these included numerous proteins with metabolic functions. Fifty proteins localized to the corpus in uninfected animals were diffusely delocalized throughout the stomach in infected tissues with atrophic gastritis; these included numerous proteins with roles in protein processing. The corresponding alterations were not detected in animals infected with a H. pylori ∆cagT mutant (lacking Cag type IV secretion system activity). These results indicate that H. pylori can cause loss of proteins normally localized to the gastric corpus as well as diffuse delocalization of corpus-specific proteins, resulting in marked changes in the normal gastric molecular partitioning into distinct corpus and antrum regions.IMPORTANCEA normal stomach is organized into distinct regions known as the corpus and antrum, which have different functions, cell types, and gland architectures. Previous studies have primarily used histologic methods to differentiate these regions and detect H. pylori-induced alterations leading to stomach cancer. In this study, we investigated H. pylori-induced gastric molecular alterations in a Mongolian gerbil model of carcinogenesis. We report the detection of numerous proteins that are preferentially localized to the gastric corpus but not the antrum in a normal stomach. We show that stomachs with H. pylori-induced atrophic gastritis (a precancerous condition characterized by the loss of specialized cell types) exhibit marked changes in the abundance and localization of proteins normally localized to the gastric corpus. These results provide new insights into H. pylori-induced gastric molecular alterations that are associated with the development of stomach cancer.


Asunto(s)
Gastritis Atrófica , Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Lesiones Precancerosas , Neoplasias Gástricas , Animales , Humanos , Gastritis Atrófica/inducido químicamente , Neoplasias Gástricas/patología , Gerbillinae , Mucosa Gástrica/patología , Gastritis/patología , Atrofia/patología , Infecciones por Helicobacter/complicaciones , Lesiones Precancerosas/patología , Carcinogénesis/patología
3.
Sci Signal ; 10(461)2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28074004

RESUMEN

Bacteria use two-component systems (TCSs) to react appropriately to environmental stimuli. Typical TCSs comprise a sensor histidine kinase that acts as a receptor coupled to a partner response regulator that coordinates changes in bacterial behavior, often through its activity as a transcriptional regulator. TCS interactions are typically confined to cognate pairs of histidine kinases and response regulators. We describe two distinct TCSs in uropathogenic Escherichia coli (UPEC) that interact to mediate a response to ferric iron. The PmrAB and QseBC TCSs were both required for proper transcriptional response to ferric iron. Ferric iron induced the histidine kinase PmrB to phosphotransfer to both its cognate response regulator PmrA and the noncognate response regulator QseB, leading to transcriptional responses coordinated by both regulators. Pretreatment of the UPEC strain UTI89 with ferric iron led to increased resistance to polymyxin B that required both PmrA and QseB. Similarly, pretreatment of several UPEC isolates with ferric iron increased tolerance to polymyxin B. This study defines physiologically relevant cross talk between TCSs in a bacterial pathogen and provides a potential mechanism for antibiotic resistance of some strains of UPEC.


Asunto(s)
Tolerancia a Medicamentos/genética , Proteínas de Escherichia coli/genética , Polimixina B/farmacología , Transducción de Señal/genética , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Compuestos Férricos/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Iones/farmacología , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
mBio ; 6(6): e01349-15, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26646009

RESUMEN

UNLABELLED: Helicobacter pylori is one of several pathogens that persist within the host despite a robust immune response. H. pylori elicits a proinflammatory response from host epithelia, resulting in the recruitment of immune cells which manifests as gastritis. Relatively little is known about how H. pylori survives antimicrobials, including calprotectin (CP), which is present during the inflammatory response. The data presented here suggest that one way H. pylori survives the nutrient sequestration by CP is through alteration of its outer membrane. CP-treated H. pylori demonstrates increased bacterial fitness in response to further coculture with CP. Moreover, CP-treated H. pylori cultures form biofilms and demonstrate decreased cell surface hydrophobicity. In response to CP, the H. pylori Lpx lipid A biosynthetic enzymes are not fully functional. The lipid A molecules observed in H. pylori cultures treated with CP indicate that the LpxF, LpxL, and LpxR enzyme functions are perturbed. Transcriptional analysis of lpxF, lpxL, and lpxR indicates that metal restriction by CP does not control this pathway through transcriptional regulation. Analyses of H. pylori lpx mutants reveal that loss of LpxF and LpxL results in increased fitness, similar to what is observed in the presence of CP; moreover, these mutants have significantly increased biofilm formation and reduced cell surface hydrophobicity. Taken together, these results demonstrate a novel mechanism of H. pylori resistance to the antimicrobial activity of CP via lipid A modification strategies and resulting biofilm formation. IMPORTANCE: Helicobacter pylori evades recognition of the host's immune system by modifying the lipid A component of lipopolysaccharide. These results demonstrate for the first time that the lipid A modification pathway is influenced by the host's nutritional immune response. H. pylori's exposure to the host Mn- and Zn-binding protein calprotectin perturbs the function of 3 enzymes involved in the lipid A modification pathway. Moreover, CP treatment of H. pylori, or mutants with an altered lipid A, exhibit increased bacterial fitness and increased biofilm formation. This suggests that H. pylori modifies its cell surface structure to survive under the stress imposed by the host immune response. These results provide new insights into the molecular mechanisms that influence the biofilm lifestyle and how endotoxin modification, which renders H. pylori resistant to cationic antimicrobial peptides, can be inactivated in response to sequestration of nutrient metals.


Asunto(s)
Biopelículas/efectos de los fármacos , Helicobacter pylori/efectos de los fármacos , Complejo de Antígeno L1 de Leucocito/farmacología , Lípido A/química , Lípido A/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Membrana Celular , Farmacorresistencia Bacteriana , Helicobacter pylori/genética , Helicobacter pylori/crecimiento & desarrollo , Helicobacter pylori/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Lipopolisacáridos/química , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA