Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Saudi Pharm J ; 32(3): 101961, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38313820

RESUMEN

Background: Although national efforts are underway to document the genomic variability of the Saudi population relative to other populations, such variability remains largely unexplored. Genetic variability is known to impact the fate of cells and increase or decrease the risk of a variety of complex diseases including cancer forms. Therefore, the identification of variants associated with cancer susceptibility in Saudi population may protect individuals from cancer or aid in patient-tailored therapies. The endo-lysosomal ion transport genes responsible for cationic ion homeostasis within the cell. We screened 703 single-nucleotide polymorphisms (SNPs) of the endo-lysosomal ion transporter genes in the Saudi population and identified cancer-associated variants that have been reported in other populations. Methods: Utilizing previously derived local data of Whole-Exome Sequencing (WES), we examined SNPs of TPCN1, TPCN2, P2RX4, TRPM7, TRPV4, TRPV4, and TRPV6 genes. The SNPs were identified for those genes by our in-house database. We predicted the pathogenicity of these variants using in silico tools CADD, Polyphen-2, SIFT, PrimateAI, and FATHMM-XF. Then, we validated our findings by exploring the genetics database (VarSome, dbSNP NCB, OMIM, ClinVar, Ensembl, and GWAS Catalog) to further link cancer risk. Results: The WES database yielded 703 SNPs found in TPCN2, P2RX4, TRPM7, TRPV4, and TRPV6 genes in 1,144 subjects. The number of variants that were found to be common in our population was 150 SNPs. We identified 13 coding-region non-synonymous variants of the endo-lysosomal genes that were most common with a minor allele frequency (MAF) of ≥ 1 %. Twelve of these variants are rs2376558, rs3750965, rs61746574, rs35264875, rs3829241, rs72928978, rs25644, rs8042919, rs17881456, rs4987682, rs4987667, and rs4987657 that were classified as cancer-associated genes. Conclusion: Our study highlighted cancer-associated SNPs in the endo-lysosomal genes among Saudi individuals. The allelic frequencies on polymorphic variants confer susceptibility to complex diseases that are comparable to other populations. There is currently insufficient clinical data supporting the link between these SNPs and cancer risk in the Saudi population. Our data argues for initiating future cohort studies in which individuals with the identified SNPs are monitored and assessed for their likelihood of developing malignancies and therapy outcomes.

2.
Saudi Pharm J ; 32(3): 101964, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38328791

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental illness that often emerges in early childhood. The incidence of ASD has shown a notable rise in recent years. ASD is defined by deficits in social communication, and presence of rigid and repetitive behaviors and interests. The underlying mechanisms of ASD remain elusive. Multiple studies have documented the presence of neuroinflammation and increased levels of inflammatory cytokines, specifically, IL-6, TNF, and NF-κB, in various brain regions, including the prefrontal cortex (PFC) and hippocampus in individuals with ASD. Noradrenergic neurons play a crucial role in brain development and the regulation of motor, behavioral, and memory functions. This study sought to examine the impact of intracerebroventricular (icv.) injection of the neurotoxin, 6-hydroxydopamine (6-OHDA), in the caudal dorsal vagal complex A2 neurons on various neuroinflammatory pathways at the hippocampus and PFC in valproic acid (VPA) autistic animal model. This was done in conjunction with an intraperitoneal (i.p.) injection of Lipopolysaccharides (LPS) in animal models with VPA-induced autism. We specifically examined the impact of the caudal fourth ventricle 6-OHDA icv. injection and LPS (i.p.) injection on self-grooming behavior. We measured the mRNA expression of IL-6, TNF-a, and NF-κB using qRT-PCR, and the protein expression of COX-2, GPX-1, p-AMPK, and AMPK using western blot analysis. The self-grooming activity was considerably higher in the combined treatment group (6-OHDA icv. + LPS i.p.) compared to the control group. A substantial increase observed in the expression of IL-6, TNF-α, and NF-κB genes in the PFC of the treatment group that received icv. Administration of 6-OHDA, compared to the control group. The VPA-autism rats that received the combo treatment exhibited a slight increase in the expression level of NF-κB gene in the hippocampus, compared to the control group. At the PFC, we noticed a substantial drop in the expression of the antioxidant protein GPX-1 in the group that received the combo treatment compared to the control group. Our data investigates a novel aspect that the 6-OHDA-induced inhibition of hindbrain A2 neurons could be influencing the neuroinflammatory pathways in the PFC and hippocampus of autistic animal models.

3.
Cancer Cell Int ; 23(1): 325, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104117

RESUMEN

BACKGROUND: Melanoma, a severe form of skin cancer, poses significant health risks due to its aggressive nature and potential for metastasis. The role of two-pore channel 2 (TPC2) in the development and progression of melanoma remains poorly understood. This study aims to investigate the impact of TPC2 knockout (KO) on melanoma-derived tumors, focusing on tumour growth and related toxicity in the organism. METHODS: The study utilized CHL-1 and B16 melanoma cell lines with TPC2 KO to assess the changes in proliferation dynamics. Methods included real-time monitoring of cell proliferation using the xCELLigence system, in vivo tumour growth assays in mice, histopathological analyses, inflammation marker assessment, and quantitative PCR (qPCR) for gene expression analysis RESULTS: TPC2 KO was found to significantly alter the proliferation dynamics of CHL-1 and B16 melanoma cells. The in vivo studies demonstrated reduced tumor growth in TPC2 KO cell-derived tumors. However, a notable increase in tumor-related toxicity in affected organs, such as the liver and spleen, was observed, indicating a complex role of TPC2 in melanoma pathology. CONCLUSIONS: The loss of TPC2 function in melanoma cells leads to reduced tumour growth but exacerbates tumour-related toxicity in the organism. These findings highlight the dual role of TPC2 in melanoma progression and its potential as a therapeutic target. Further research is needed to fully understand the mechanisms underlying these effects and to explore TPC2 as a treatment target in melanoma.

4.
Analyst ; 148(9): 2170-2179, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37060111

RESUMEN

Herein, a molecularly imprinted polymer (MIP) was fabricated for specific sensing of an aminoglycoside e.g. kanamycin (KANA). Carbon paste modified with a MIP specific to Cu2+-KANA was first introduced. Copper (Cu2+) as a metal ion was used as a signal tracer and an amplifier, producing a current response measured by differential pulse voltammetry (DPV). Introducing the aminoglycoside drug into the solution containing Cu2+ did not affect the current response of the NIP/CPE. Under the optimum conditions, the as-fabricated sensor exhibited an increase in the current response in the range of 0.55-550 nM with a good limit of detection (LOD, S/N = 3) of 161 pM. The sensor exhibited many advantages including high sensitivity and selectivity, good stability and reproducibility, and cost-effectiveness. Moreover, it was successfully applied for the determination of KANA in milk and honey samples with RSD % not more than 3.3%, suggesting the reliability of the as-designed sensor.


Asunto(s)
Cobre , Impresión Molecular , Reproducibilidad de los Resultados , Antibacterianos , Aminoglicósidos , Técnicas Electroquímicas , Electrodos , Límite de Detección
5.
Saudi Pharm J ; 31(10): 101756, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37705877

RESUMEN

Non-small cell lung carcinoma is a challenging disease worldwide. This study aims to determine whether combining erlotinib, an epidermal growth factor receptor (EGFR) inhibitor, with cabozantinib, a mesenchymal-epithelial transition factor (c-Met) inhibitor, would have an augmented therapeutic benefit on A549 cells. The combination of erlotinib and cabozantinib (5 µM) inhibited A549 cell viability compared to each monotherapy at ≥ 10 µM as confirmed by the MTT assay. Combination therapy also has a more potent inhibition of cellular migration than monotherapy using the wound-healing assay. Furthermore, mRNA expression analyses for assessing apoptosis, metastasis, and cell cycle-related genes, the results showed that combination therapy significantly inhibits levels of BCL-2, MMP-9, VEGF, and TGF-ß while inducing p53, p21, and BAX expression. In terms of oncogenic markers, western blotting analysis showed a significant reduction of BCl-2 expression and elevation in caspase3, p53, and p21 proteins as indicators of cell death via apoptosis. The antitumor in vivo effect of the combination therapy showed significant tumor inhibition compared to monotherapy. In conclusion, combination therapy could be a potential promising strategy to treat non-small cell lung carcinoma.

6.
Saudi Pharm J ; 31(2): 245-254, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36942275

RESUMEN

Store-operated calcium entry (SOCE) is an important pathway for calcium signaling that regulates calcium influx across the plasma membrane upon the depletion of calcium stores in the endoplasmic reticulum. SOCE participates in regulating a number of physiological processes including cell proliferation and migration while SOCE dysregulation has been linked with pathophysiological conditions such as inflammation and cancer. The crosslink between cancer and inflammation has been well-established where abundant evidence demonstrate that inflammation plays a role in cancer pathophysiology and the response of cancer cells to chemotherapeutic agents including cisplatin. Indeed, the efficacy of cisplatin against cancer cells is reduced by inflammation. Interestingly, it was shown that SOCE enhances inflammatory signaling in immune cells. Therefore, the main objectives of this study are to examine the impact of SOCE inhibition on the cisplatin sensitivity of breast cancer cells and to explore its related mechanism in modulating the inflammatory response in breast cancer cells. Our findings showed that SOCE inhibitor (BTP2) enhanced cisplatin cytotoxicity against resistant breast cancer cells via inhibition of cell proliferation and migration as well as induction of apoptosis. We also found an upregulation in the gene expression of two major components of SOCE, STIM1 and ORAI1, in cisplatin-resistant breast cancer cells compared to cisplatin-sensitive breast cancer cells. In addition, cisplatin treatment increased the gene expression of STIM1 and ORAI1 in cisplatin-resistant breast cancer cells. Finally, this study also demonstrated that cisplatin therapy caused an increase in the gene expression of inflammatory mediators COX2, IL-8, and TNF-α as well as COX2 protein and upon SOCE inhibition using BTP2, the effect of cisplatin on the inflammatory mediators was reversed. Altogether, this study has proven the pivotal role of SOCE in cisplatin resistance of breast cancer cells and showed the importance of targeting this pathway in improving breast cancer therapy.

7.
Saudi Pharm J ; 31(8): 101669, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576853

RESUMEN

Previous investigations have shown that D. viscosa herbal extract is often used to treat a variety of diseases. Therefore, the purpose of this study was to investigate any additional potential impacts on rat liver and kidney damage induced by diabetes. Streptozotocin (STZ) (60 mg/kg/day) was given as a single dosage to cause type 1 diabetes. After then, diabetic rats received oral doses of D. viscosa for four weeks at 150 and 300 mg/kg/day. Blood, liver, and kidney tissues were collected at the end of the treatment and examined. Analysis was made of the serum lipid profile, liver, and kidney functions, as well as blood biochemistry. Moreover, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1ß), prostaglandin E-2 (PGE-2), and nitric oxide (NO) were estimated in serum. In liver and kidney samples, thiobarbituric acid reactive substances (TBARs) and reduced glutathione (GSH), as well as the pro-inflammatory cytokines and enzymatic activities of glutathione peroxidase (GPx), glutathione reeducates (GR), glutathione-S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) were analyzed. Histological changes in liver and kidney cross-sections were also observed. Our findings demonstrated that D. viscosa dramatically decreased pro-inflammatory indicators in blood, kidney, and liver tissues as well as blood glucose, and restored insulin levels, and lipid profiles. Additionally, it significantly raises the antioxidant enzyme activity SOD, CAT, GPx, and GST, while significantly lowering TBARs levels. The above-mentioned biochemical changes that took place in tissues were further supported by histological alterations. These findings imply that D. viscosa protects against STZ-induced hyperglycemia, aberrant lipid synthesis, and oxidative stress and that these benefits may be mediated by interacting with various targets to increase the levels of antioxidant enzymes in the liver and kidneys. Its mode of action and safety for use as medicine against various metabolic problems caused by diabetes require more research.

8.
Cell Immunol ; 376: 104531, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35576719

RESUMEN

Psoriasis is a chronic dermal inflammatory disease with a world-wide prevalence in which different immune/non-immune cells, e.g. T cells, macrophages, neutrophils, and keratinocytes play a decisive role. These immune cells interact among themselves by releasing multiple mediators which eventually cause characteristic psoriatic plaques in the skin. T cells are reported to be significant contributors to psoriatic inflammation through release of multiple cytokines which are controlled by several kinases, one of them being Lymphocyte-specific protein tyrosine kinase (Lck). Lck has been reported to be crucial for expression/production of several key inflammatory cytokines though modulation of several other kinases/transcription factors in T cells. Therefore, in this investigation, effect of Lck inhibitor, A-770041 was examined on PLCγ, p38MAPK, NFATc1, NFkB and STAT3, TNF-α, IFN-γ, Foxp3, IL-17A, in CD4+ T cells in imiquimod (IMQ)-induced psoriatic inflammation in mice. Results from the present study exhibit that p-Lck expression is enhanced in CD4+ T cells of IMQ-treated mice which is concomitant with enhanced clinical features of psoriatic inflammation (ear/back skin thickness, MPO activity, acanthosis/leukocytic infiltration) and molecular parameters (enhanced expression of p-Lck, p-PLCγ, p-p38-MAPK, NFATc1, p-NFkB, TNF-α, IFN-γ, p-STAT3, and IL-17A in CD4+ T cells). Inhibition of Lck signaling led to amelioration of clinical features of psoriasis through attenuation of Th1/Th17 immune responses and upregulation of Treg cells in IMQ-treated mice. In summary, current investigations reveal that Lck signaling is a crucial executor of inflammatory signaling in CD4+ T cells in the context of psoriatic inflammation. Therefore, Lck inhibition may be pursued as an effective strategy to counteract psoriatic inflammation.


Asunto(s)
Linfocitos T CD4-Positivos , Interleucina-17 , Psoriasis , Pirazoles , Pirimidinas , Adyuvantes Inmunológicos/efectos adversos , Adyuvantes Inmunológicos/farmacología , Animales , Linfocitos T CD4-Positivos/inmunología , Citocinas/biosíntesis , Citocinas/inmunología , Modelos Animales de Enfermedad , Imiquimod/efectos adversos , Imiquimod/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Interleucina-17/inmunología , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/antagonistas & inhibidores , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/biosíntesis , Ratones , Psoriasis/tratamiento farmacológico , Psoriasis/inmunología , Pirazoles/inmunología , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/inmunología , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Piel/efectos de los fármacos , Piel/inmunología , Factor de Necrosis Tumoral alfa/inmunología
9.
Biotechnol Lett ; 44(5-6): 787-801, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35501620

RESUMEN

OBJECTIVES: Colorectal cancer (CRC) is the third most prevalent type of cancer in the United States. The treatment options for cancer include surgery, chemotherapy, radiation, and/or targeted therapy, which show significant improvement in overall survival. Among the various available treatments, antagonizing VEGF/VEGFR-2 pathways have shown effectiveness in limiting colorectal cancer growth and improving clinical outcomes. In this regard, we hypothesized that F16, a novel VEGFR-2 inhibitor, would control colorectal cancer growth by blocking the VEGFR-2 singling pathway in both in vitro and in vivo conditions. Therefore, the current study was aimed to analyze the efficacy of F16 on the growth of Colo 320DM cells under in vitro and in vivo conditions. RESULTS: Human RT2 profiler PCR array analysis results clearly showed that angiogenesis and anti-apoptosis-related gene expressions were significantly reduced in HUVEC cells after F16 (5 µM) treatment. In addition, Western blot results revealed that F16 attenuated the downstream signaling of the VEGFR-2 pathway in HUVEC cells by up-regulating the p53 and p21 levels and down-regulating the p-AKT and p-FAK levels. Accordingly, F16 confirmed potent cytotoxic effects against the cell viability of Colo 320DM tumors, with an IC50 value of 9.52 ± 1.49 µM. Furthermore, treatment of mice implanted with Colo 320DM xenograft tumors showed a significant reduction in tumor growth and increases in survival rate compared to controls. Immunohistochemistry analysis of tumor tissues showed a reduction in CD31 levels also in F16 treated groups. CONCLUSIONS: These results justify further evaluation of F16 as a potential new therapeutic agent for treating colorectal cancers.


Asunto(s)
Neoplasias Colorrectales , Indoles/farmacología , Compuestos de Piridinio/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Medicina (Kaunas) ; 58(7)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35888608

RESUMEN

Background and Objectives: The development of radioresistance is a fundamental barrier to successful glioblastoma therapy. Autophagy is thought to play a role in facilitating the DNA repair of DNA damage foci in radiation-exposed tumor cells, thus, potentially contributing to their restoration of proliferative capacity and development of resistance in vitro. However, the effect of autophagy inhibitors on DNA damage repair is not fully clear and requires further investigation. Materials and Methods: In this work, we utilized M059K (DNA-PKcs proficient) and M059J (DNA-PKcs deficient) glioma cell lines to investigate the role of autophagy inhibitors in the DNA repair of radiation-induced DNA damage. Cell viability following radiation was determined by trypan blue exclusion in both cell lines. Cell death and autophagy assays were performed to evaluate radiation-induced cell stress responses. DNA damage was measured as based on the intensity of phosphorylated γ-H2AX, a DNA double-stranded breaks (DSBs) marker, in the presence or absence of autophagy inhibitors. Results: The cell viability assay showed that M059J cells were more sensitive to the same dose of radiation (4 Gy) than M059K cells. This observation was accompanied by an elevation in γ-H2AX formation in M059J but not in M059K cells. In addition, the DAPI/TUNEL and Senescence-associated ß-galactosidase (SA-ß-gal) staining assays did not reveal significant differences in apoptosis and/or senescence induction in response to radiation, respectively, in either cell line. However, acridine orange staining demonstrated clear promotion of acidic vesicular organelles (AVOs) in both cell lines in response to 4 Gy radiation. Moreover, DNA damage marker levels were found to be elevated 72 h post-radiation when autophagy was inhibited by the lysosomotropic agent bafilomycin A1 (BafA1) or the PI3K inhibitor 3-methyl adenine (3-MA) in M059K cells. Conclusions: The extent of the DNA damage response remained high in the DNA-PKcs deficient cells following exposure to radiation, indicating their inability to repair the newly formed DNA-DSBs. On the other hand, radioresistant M059K cells showed more DNA damage response only when autophagy inhibitors were used with radiation, suggesting that the combination of autophagy inhibitors with radiation may interfere with DNA repair efficiency.


Asunto(s)
Glioma , Fosfatidilinositol 3-Quinasas , Autofagia , Línea Celular Tumoral , ADN , Reparación del ADN , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/radioterapia , Humanos , Tolerancia a Radiación/fisiología
11.
Saudi Pharm J ; 30(1): 91-101, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35145348

RESUMEN

Emerging evidence has shown that the therapy-induced senescent growth arrest in cancer cells is of durable nature whereby a subset of cells can reinstate proliferative capacity. Promising new drugs named senolytics selectively target senescent cells and commit them into apoptosis. Accordingly, senolytics have been proposed as adjuvant cancer treatment to cull senescent tumor cells, and thus, screening for agents that exhibit senolytic properties is highly warranted. Our study aimed to investigate three agents, sorafenib, rapamycin, and venetoclax for their senolytic potential in doxorubicin-induced senescence in HCT116 cells. HCT116 cells were treated with one of the three agents, sorafenib (5 µM), rapamycin (100 nM), or venetoclax (10 µM), in the absence or presence of doxorubicin (1 µM). Senescence was evaluated using microscopy-based and flow cytometry-based Senescence-associated-ß-galactosidase staining (SA-ß-gal), while apoptosis was assessed using annexin V-FITC/PI, and Muse caspase-3/-7 activity assays. We screened for potential genes through which the three drugs exerted senolytic-like action using the Human Cancer Pathway Finder PCR array. The three agents reduced doxorubicin-induced senescent cell subpopulations and significantly enhanced the apoptotic effect of doxorubicin compared with those treated only with doxorubicin. The senescence genes IGFBP5 and BMI1 and the apoptosis genes CASP7 and CASP9 emerged as candidate genes through which the three drugs exhibited senolytic-like properties. These results suggest that the attenuation of doxorubicin-induced senescence might have shifted HCT116 cells to apoptosis by exposure to the tested pharmacological agents. Our work argues for the use of senolytics to reduce senescence-mediated resistance in tumor cells and to enhance chemotherapy efficacy.

12.
Saudi Pharm J ; 30(2): 138-149, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35528855

RESUMEN

Melanoma is an aggressive skin cancer with a high rate of metastasis to other organs. Recent studies specified the overexpression of V-domain Ig suppressor of T-cell activation (VISTA) and Aryl Hydrocarbon Receptor (AHR) in melanoma. Metformin shows anti-tumor activities in several cancer types. However, the mechanism is unclear. This study aims to investigate the inhibitory effect of metformin on VISTA via AHR in melanoma cells (CHL-1, B16) and animal models. VISTA and AHR levels were assessed by qPCR, Western blot, immunofluorescence microscope, flow cytometry, and immunohistochemistry. Here, metformin significantly decreased VISTA and AHR levels in vitro and in vivo. Furthermore, metformin inhibited all AHR-regulated genes. VISTA levels were dramatically inhibited by AHR modulations using shRNA and αNF, confirming the central role of AHR in VISTA. Finally, melanoma cells were xenografted in C57BL/6 and nude mice. Metformin significantly reduced the tumor volume and growth rate. Likewise, VISTA and AHR-regulated protein levels were suppressed in both models. These findings demonstrate for the first time that VISTA is suppressed by metformin and identified a new regulatory mechanism through AHR. The data suggest that metformin could be a new potential therapeutic strategy to treat melanoma patients combined with targeted immune checkpoint inhibitors.

13.
Saudi Pharm J ; 30(8): 1159-1169, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36164571

RESUMEN

Gefitinib is a tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR), used for the treatment of advanced or metastatic non-small cell lung cancer. Recently, studies proved that Gefitinib-induced cardiotoxicity through induction of oxidative stress leads to cardiac hypertrophy. The current study was conducted to understand the mechanisms underlying gefitinib-induced cardiac hypertrophy through studying the roles of angiotensin II (AngII), oxidative stress, and mitogen-activated protein kinase (MAPK) pathway. Male Wistar albino rats were treated with valsartan, gefitinib, or both for four weeks. Blood samples were collected for AngII and cardiac markers measurement, and hearts were harvested for histological study and biochemical analysis. Gefitinib caused histological changes in the cardiac tissues and increased levels of cardiac hypertrophy markers, AngII and its receptors. Blocking of AngII type 1 receptor (AT1R) via valsartan protected hearts and normalized cardiac markers, AngII levels, and the expression of its receptors during gefitinib treatment. valsartan attenuated gefitinib-induced NADPH oxidase and oxidative stress leading to down-regulation of JNK/p38-MAPK pathway. Collectively, AT1R blockade adjusted AngII-induced NADPH oxidase and JNK/p38-MAPK leading to attenuation of gefitinib-induced cardiac hypertrophy. This study found a pivotal role of AngII/AT1R signaling in gefitinib-induced cardiac hypertrophy, which may provide novel approaches in the management of EGFRIs-induced cardiotoxicity.

14.
J Biochem Mol Toxicol ; 35(9): e22842, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34273911

RESUMEN

Doxorubicin (DOX) treatment has been associated with cardiotoxicity. Therefore, it is crucial to search for a therapeutic that can effectively mitigate DOX-induced cardiotoxicity. This study was conducted to investigate the protective effects of valsartan (VAL) against DOX-induced cardiotoxicity. Sprague-Dawley rats were divided into four treatment groups: Group I: Control, Group II: VAL (30 mg/kg, ip), Group III: DOX (15 mg/kg, ip), and Group IV: VAL + DOX (30 + 15 mg/kg, ip). All groups were treated every other day for 14 days. Blood was isolated for biochemical and metabolomics studies, and sections of the heart were also analyzed for histopathological and immunohistochemical alterations to detect changes in P53, BAX, BCL-2, and P62 expression. The combination of VAL + DOX resulted in a marked decrease in cardiac biomarker enzymes (aminotransferase and creatine phosphokinase) compared to DOX monotherapy. In addition, the histopathological examination of the VAL + DOX combination revealed a low percentage of fibrosis and inflammation. Immunohistochemical expression of p53 and BAX was significantly reduced, whereas BCL-2 expression was significantly increased in the VAL + DOX treatment group compared to DOX monotherapy. Also, the combination of VAL + DOX reverses the negative effect of DOX on nuclear p62 expression. Analysis of serum metabolites showed that DOX monotherapy reduced the number of several amino acids, whereas the combination of VAL + DOX restored these metabolic pathways. This study revealed the potential cardioprotective effect of VAL, which may provide novel and promising approaches for managing cardiotoxicity induced by DOX.


Asunto(s)
Cardiotónicos/farmacología , Cardiotoxicidad , Doxorrubicina/administración & dosificación , Metabolómica , Valsartán/farmacología , Animales , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Cardiotoxicidad/prevención & control , Doxorrubicina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
15.
Mikrochim Acta ; 188(4): 124, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712895

RESUMEN

A sensitive and selective molecular imprinted polymeric network (MIP) electrochemical sensor is proposed for the determination of anti-cancer drug oxaliplatin (OXAL). The polymeric network [poly(pyrrole)] was electrodeposited on a glassy carbon electrode (GCE) modified with silver nanoparticles (Ag) functionalized Cu-metal organic framework (Cu-BDC) and nitrogen-doped carbon nanotubes (N-CNTs). The MIP-Ag@Cu-BDC /N-CNTs/GCE showed an observable reduction peak at -0.14 V, which corresponds to the Cu-BDC reduction. This peak increased and decreased by eluting and rebinding of OXAL, respectively. The binding constant between OXAL and Cu-BDC was calculated to be 3.5 ± 0.1 × 107 mol-1 L. The electrochemical signal (∆i) increased with increasing OXAL concentration in the range 0.056-200 ng mL-1 with a limit of detection (LOD, S/N = 3) of 0.016 ng mL-1. The combination of N-CNTs and Ag@Cu-BDC improves both the conductivity and the anchoring sites for binding the polymer film on the surface of the electrode. The MIP-based electrochemical sensor offered outstanding sensitivity, selectivity, reproducibility, and stability. The MIP-Ag@Cu-BDC /N-CNTs/GCE was applied to determine OXAL in pharmaceutical injections, human plasma, and urine samples with good recoveries (97.5-105%) and acceptable relative standard deviations (RSDs = 1.8-3.2%). Factors affecting fabrication of MIP and OXAL determination were optimized using standard orthogonal design using L25 (56) matrix. This MIP based electrochemical sensor opens a new venue for the fabrication of other similar  sensors and biosensors.


Asunto(s)
Técnicas Electroquímicas/métodos , Estructuras Metalorgánicas/química , Polímeros Impresos Molecularmente/química , Nanotubos de Carbono/química , Oxaliplatino/análisis , Cobre/química , Técnicas Electroquímicas/instrumentación , Electrodos , Humanos , Límite de Detección , Nanopartículas del Metal/química , Nitrógeno/química , Oxaliplatino/sangre , Oxaliplatino/orina , Polímeros/química , Pirroles/química , Reproducibilidad de los Resultados , Plata/química
16.
Molecules ; 26(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209921

RESUMEN

Three novel gold(III) complexes (1-3) of general composition [Au(Bipydc)(S2CNR2)]Cl2 (Bipydc = 2,2'-bipyridine-3,3'-dicarboxylic acid and R = methyl for dimethyldithiocarbamate (DMDTC), ethyl for diethyldithiocarbamate (DEDTC), and benzyl for dibenzyldithiocarbamate (DBDTC)) have been synthesized and characterized by elemental analysis, FTIR and NMR spectroscopic techniques. The spectral results confirmed the presence of both the Bipydc and dithiocarbamate ligands in the complexes. The in vitro cytotoxic studies demonstrated that compounds 1-3 were highly cytotoxic to A549, HeLa, MDA-231, and MCF-7 cancer cells with activities much higher (about 25-fold) than cisplatin. In order to know the possible mode of cell death complex 2, [Au(Bipydc)(DEDTC)]Cl2 was further tested for induction of apoptosis towards the MCF-7 cells. The results indicated that complex 2 induces cell death through apoptosis.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Oro/química , Piridinas/química , Tiocarbamatos/química , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Células HeLa , Humanos , Células MCF-7
17.
Semin Cancer Biol ; 56: 100-115, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29155240

RESUMEN

Matrix metalloproteinases (MMPs) are members of zinc-dependent endopeptidases implicated in a variety of physiological and pathological processes. Over the decades, MMPs have been studied for their role in cancer progression, migration, and metastasis. As a result, accumulated evidence of MMPs incriminating role has made them an attractive therapeutic target. Early generations of broad-spectrum MMP inhibitors exhibited potent inhibitory activities, which subsequently led to clinical trials. Unexpectedly, these trials failed to meet the desired goals, mainly due to the lack of efficacy, poor oral bioavailability, and toxicity. In this review, we discuss the regulatory role of MMPs in cancer progression, current strategies in targeting MMPs for cancer treatment including prodrug design and tumor imaging, and therapeutic value of MMPs as biomarkers in breast, lung, and prostate cancers.


Asunto(s)
Metaloproteinasas de la Matriz/metabolismo , Neoplasias/metabolismo , Animales , Biomarcadores , Manejo de la Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Metaloproteinasas de la Matriz/química , Metaloproteinasas de la Matriz/genética , Terapia Molecular Dirigida , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
18.
Saudi Pharm J ; 27(8): 1203-1209, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31885480

RESUMEN

There are many mechanisms of resistance, chemoresistance of HeLa cells to anti-cancer agents seems to be autophagy-mediated. While using very effective anti-cancers such as Doxorubicin and cisplatin, cells overcome the cytotoxicity of these drugs through promotion of what so-called cytoprotective autophagy. Here in this study, we sought to introduce a novel platinum-based compound PBC-II that possesses anti-cancer activity. Our data showed that PBC-II is able to induce apoptosis at relatively low concentrations, with no detectable reactive oxygen species (ROS). However, further experiments demonstrated that exposure of HeLa cells to PBC-II did not promote autophagy; rather, it resulted in accumulation of p62 and decrease in LC3-II levels. Autophagy was then promoted in HeLa cells pharmacologically by Doxorubicin and genetically by siRNA IL-10. In order to confirm promotion of autophagy in our model, we performed acridine orange staining to assess for autophagy under microscope as well as via flow cytometry. We then measured protein level of autophagy markers p62 and LC3 by western blot. Our data indicated that PBC-II interferes with therapy-induced autophagy. We also determined PI3K activity while co-incubation of PBC-II with autophagy inducers. It was clear that PI3K activation decreased when PBC-II was co-administered with autophagy inducers. Collectively, PBC-II exerts unique anti-proliferative effects associated with inhibition of autophagy, which indicates that PBC-II is potentially a promising agent to be used in resistant ovarian tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA