Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Appl Biochem ; 69(6): 2624-2640, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35048414

RESUMEN

Thidiazuron (TDZ) is an active substituted phenyl urea compound that has found a significant role as a plant growth regulator. The most exciting aspect of its function is that it can mimic auxins and cytokinin but is chemically different from these two. Many theories have been put forward, and experiments performed to understand the mode of action of TDZ in callogenesis. One suggested mechanism presents that it works by inhibiting the cytokinin degrading enzymes that compete with cytokinin for an active site on the enzyme. An example is the TDZ-induced suppressed expression of gibberellic acid (GA) biosynthesis genes encoding GA3 and GA20 oxidases. This is entailed with a slightly increased expression of GA catabolism genes encoding GA20 oxidase. Similarly, one of the recommendations is that TDZ induces the expression of specific genes and transcription regulatory sequences that are either responsible directly for callus formation or in turn induce other auxins or cytokinin for callogenesis. There is no concise review available that discusses the details of TDZ-induced callus, specifically and other in vitro cultures in general. This review is an attempt to explore all these pathways and mechanisms involved in callogenesis in plants stimulated by TDZ.


Asunto(s)
Citocininas , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Citocininas/farmacología , Citocininas/metabolismo , Plantas/metabolismo , Oxidorreductasas , Ácidos Indolacéticos
2.
3 Biotech ; 13(12): 414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38009163

RESUMEN

This study assesses the mechanism of action of plant-based silver nanoparticles (AgNPs) against antibiotic-resistant bacteria. We compared AgNPs synthesized through Salvia moorcroftiana and Origanum vulgare extracts and their conjugates with the antibiotic Ceftriaxone for their capacity to cause oxidative damage through reactive oxygen species (ROS). We quantified ROS in the cells of two bacterial strains after treating them with all AgNP types and observed that AgNPs were most effective in K. pneumoniae as they resulted in the highest ChS1 count (44,675), while in P. aeruginosa, Cfx-AgNPs induced the highest levels of ROS with ChS1 count of 56,865. DNA analysis showed that both plant-based AgNPs (O-AgNPs = 0.192 and S-AgNPs = 0.152) were most effective in K. pneumoniae and S-AgNPs (abs = 0.174) and O-Cfx-AgNPs (abs = 0.261) in P. aeruginosa. We observed a significant increase in the levels of conjugated dienes (86.4 µM) and malondialdehyde (172.25 nM) in the bacterial strains after treatment with AgNPs, compared to the control (71.65 µM and 18.064 nM, respectively, in K. pneumoniae and P. aeruginosa). These results indicate lipid peroxidation. AgNPs also increased the levels of protein thiols (0.672 nM) compared to the control (0.441 nM) in K. pneumoniae, except for Chem-AgNPs (0.21 nM). These results suggest that plant-based AgNPs are more effective in oxidizing bacterial DNA, protein, and lipids than Chem-AgNPs. Furthermore, protein oxidation varied between AgNPs alone and AgNPs-antibiotic conjugates. The highest levels of protein thiols were found in the samples treated with O-Cfx-AgNPs (0.672 nM and 0.525 nM in K. pneumoniae and P. aeruginosa, respectively). The results demonstrated that AgNPs kill bacteria by altering bacterial macromolecules such as DNA, lipids, and proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA