Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Gastroenterology ; 164(1): 72-88.e18, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108710

RESUMEN

BACKGROUND & AIMS: Single-agent anti-PD1 checkpoint inhibitors convey outstanding clinical benefits in a small fraction (∼20%) of patients with advanced hepatocellular carcinoma (aHCC) but the molecular mechanisms determining response are unknown. To fill this gap, we herein analyze the molecular and immune traits of aHCC in patients treated with anti-PD1. METHODS: Overall, 111 tumor samples from patients with aHCC were obtained from 13 centers before systemic therapies. We performed molecular analysis and immune deconvolution using whole-genome expression data (n = 83), mutational analysis (n = 72), and histologic evaluation with an endpoint of objective response. RESULTS: Among 83 patients with transcriptomic data, 28 were treated in frontline, whereas 55 patients were treated after tyrosine kinase inhibitors (TKI) either in second or third line. Responders treated in frontline showed upregulated interferon-γ signaling and major histocompatibility complex II-related antigen presentation. We generated an 11-gene signature (IFNAP), capturing these molecular features, which predicts response and survival in patients treated with anti-PD1 in frontline. The signature was validated in a separate cohort of aHCC and >240 patients with other solid cancer types where it also predicted response and survival. Of note, the same signature was unable to predict response in archival tissue of patients treated with frontline TKIs, highlighting the need for fresh biopsies before immunotherapy. CONCLUSION: Interferon signaling and major histocompatibility complex-related genes are key molecular features of HCCs responding to anti-PD1. A novel 11-gene signature predicts response in frontline aHCC, but not in patients pretreated with TKIs. These results must be confirmed in prospective studies and highlights the need for biopsies before immunotherapy to identify biomarkers of response.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Estudios Prospectivos , Biomarcadores
2.
BMC Microbiol ; 24(1): 54, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341568

RESUMEN

BACKGROUND: Candida albicans is the most common fungus that causes vaginal candidiasis in immunocompetent women and catastrophic infections in immunocompromised patients. The treatment of such infections is hindered due to the increasing emergence of resistance to azoles in C. albicans. New treatment approaches are needed to combat candidiasis especially in the dwindled supply of new effective and safe antifungals. The resistance to azoles is mainly attributed to export of azoles outside the cells by means of the efflux pump that confers cross resistance to all azoles including fluconazole (FLC). OBJECTIVES: This study aimed to investigate the possible efflux pump inhibiting activity of fusidic acid (FA) in C. albicans resistant isolates and the potential use of Fusidic acid in combination with fluconazole to potentiate the antifungal activity of fluconazole to restore its activity in the resistant C. albicans isolates. METHODS: The resistance of C. albicans isolates was assessed by determination of minimum inhibitory concentration. The effect of Fusidic acid at sub-inhibitory concentration on efflux activity was assayed by rhodamine 6G efflux assay and intracellular accumulation. Mice model studies were conducted to evaluate the anti-efflux activity of Fusidic acid and its synergistic effects in combination with fluconazole. Impact of Fusidic acid on ergosterol biosynthesis was quantified. The synergy of fluconazole when combined with Fusidic acid was investigated by determination of minimum inhibitory concentration. The cytotoxicity of Fusidic acid was tested against erythrocytes. The effect of Fusidic acid on efflux pumps was tested at the molecular level by real-time PCR and in silico study. In vivo vulvovaginitis mice model was used to confirm the activity of the combination in treating vulvovaginal candidiasis. RESULTS: Fusidic acid showed efflux inhibiting activity as it increased the accumulation of rhodamine 6G, a substrate for ABC-efflux transporter, and decreased its efflux in C. albicans cells. The antifungal activity of fluconazole was synergized when combined with Fusidic acid. Fusidic acid exerted only minimal cytotoxicity on human erythrocytes indicating its safety. The FA efflux inhibitory activity could be owed to its ability to interfere with efflux protein transporters as revealed by docking studies and downregulation of the efflux-encoding genes of both ABC transporters and MFS superfamily. Moreover, in vivo mice model showed that using fluconazole-fusidic acid combination by vaginal route enhanced fluconazole antifungal activity as shown by lowered fungal burden and a negligible histopathological change in vaginal tissue. CONCLUSION: The current findings highlight FA's potential as a potential adjuvant to FLC in the treatment of vulvovaginal candidiasis.


Asunto(s)
Candidiasis Vulvovaginal , Candidiasis , Humanos , Femenino , Animales , Ratones , Fluconazol/farmacología , Antifúngicos/farmacología , Antifúngicos/metabolismo , Candidiasis Vulvovaginal/tratamiento farmacológico , Ácido Fusídico/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistencia Fúngica , Candida albicans , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Azoles/farmacología , Pruebas de Sensibilidad Microbiana
3.
Anal Bioanal Chem ; 416(16): 3835-3846, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38809460

RESUMEN

An environmentally conscious methodology is investigated for the precise and discerning identification of trace concentrations of gold ions in diverse matrices. A novel optical sensor membrane is proposed for the determination of Au3+ ions, utilizing the immobilization of ß-2-hydroxybenzyl-3-methoxy-2-hydroxyazastyrene (HMHS) entrapped in polyvinyl chloride (PVC). The sensor incorporates sodium tetraphenylborate (Na-TPB) as the ionic additive and dibutyl phthalate (DBP) as a plasticizer. Under optimal conditions, the suggested sensor exhibits a linear calibration response to Au3+ ions within a concentration range of 5.0 to 165 ng mL-1. Detection and quantification limits are specified as 1.5 and 4.8 ng mL-1, respectively, with a rapid response time of 5.0 min. Upon presentation, this optical sensor not only affirms high reproducibility, stability, and an extended operational lifespan but also showcases exceptional selectivity for Au3+ ions. Notably, no discernible interference is observed when assessing the potential influence of other cations and anions on Au3+ ion detection. The adaptability of this optical sensor is validated through its successful application in determining Au3+ ion concentrations across various sample types, including water, environmental, cosmetics, and soil matrices.

4.
Bioorg Chem ; 144: 107136, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38271823

RESUMEN

Two innovative series derived from nicotinic acid scaffold were synthesized and evaluated for their anti-inflammatory activity. Ibuprofen, celecoxib and indomethacin were used as standard drugs. All the newly synthesized compounds were in vitro screened for their anti-inflammatory activity adopting 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide dye (MTT), as well as Griess assays. The results showed that all compounds exhibited significant anti-inflammatory activity without affecting the viability of the macrophages compared to ibuprofen. In addition, compounds 4d, 4f, 4g, 4h and 5b exhibited the most potent nitrite inhibition activity and consequently superior anti-inflammatory activity with MTT results ranging between values 86.109 ± 0.51 to 119.084 ± 0.09. The most active compounds were subjected to evaluation of TNF-α, IL-6, iNOS and COX-2 levels in LPS/INF γ-stimulated RAW 264.7 macrophage cells in comparison to ibuprofen as a reference compound. The five compounds showed comparable inhibition potency of these inflammatory cytokines compared to ibuprofen. Same compounds were further in vivo evaluated for their anti-inflammatory activity via carrageenan induced arthritis in rats. Regarding the ulcerogenic profile, compound 4h showed mild infiltration of gastric mucosa superb to compound 5b displayed severe gastritis. Molecular docking of 4h and 5b in the COX-2 active site was performed to evaluate their preferential COX-2 inhibitory potency. The docking results were in accordance with the biological findings.


Asunto(s)
Ibuprofeno , Niacina , Ratas , Animales , Ibuprofeno/farmacología , Ibuprofeno/uso terapéutico , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de la Ciclooxigenasa 2 , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Antiinflamatorios no Esteroideos/química , Relación Estructura-Actividad
5.
J Cell Physiol ; 238(1): 32-69, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36317692

RESUMEN

A type of small noncoding RNAs known as microRNAs (miRNAs) fine-tune gene expression posttranscriptionally by binding to certain messenger RNA targets. Numerous physiological processes in the liver, such as differentiation, proliferation, and apoptosis, are regulated by miRNAs. Additionally, there is growing evidence that miRNAs contribute to liver pathology. Extracellular vesicles like exosomes, which contain secreted miRNAs, may facilitate paracrine and endocrine communication between various tissues by changing the gene expression and function of distal cells. The use of stable miRNAs as noninvasive biomarkers was made possible by the discovery of these molecules in body fluids. Circulating miRNAs reflect the conditions of the liver that are abnormal and may serve as new biomarkers for the early detection, prognosis, and evaluation of liver pathological states. miRNAs are appealing therapeutic targets for a range of liver disease states because altered miRNA expression is associated with deregulation of the liver's metabolism, liver damage, liver fibrosis, and tumor formation. This review provides a comprehensive review and update on miRNAs biogenesis pathways and mechanisms of miRNA-mediated gene silencing. It also outlines how miRNAs affect hepatic cell proliferation, death, and regeneration as well as hepatic detoxification. Additionally, it highlights the diverse functions that miRNAs play in the onset and progression of various liver diseases, including nonalcoholic fatty liver disease, alcoholic liver disease, fibrosis, hepatitis C virus infection, and hepatocellular carcinoma. Further, it summarizes the diverse liver-specific miRNAs, illustrating the potential merits and possible caveats of their utilization as noninvasive biomarkers and appealing therapeutic targets for liver illnesses.


Asunto(s)
Biomarcadores , Hepatopatías , Hígado , MicroARNs , Humanos , Hígado/patología , Hígado/fisiología , MicroARNs/genética , Exosomas , Silenciador del Gen , Hepatopatías/patología
6.
PLoS Pathog ; 17(3): e1009413, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33705496

RESUMEN

SARS-CoV-2 virus is transmitted in closed settings to people in contact with COVID-19 patients such as healthcare workers and household contacts. However, household person-to-person transmission studies are limited. Households participating in an ongoing cohort study of influenza incidence and prevalence in rural Egypt were followed. Baseline enrollment was done from August 2015 to March 2017. The study protocol was amended in April 2020 to allow COVID-19 incidence and seroprevalence studies. A total of 290 households including 1598 participants were enrolled and followed from April to October 2020 in four study sites. When a participant showed respiratory illness symptoms, a serum sample and a nasal and an oropharyngeal swab were obtained. Swabs were tested by RT-PCR for SARS-CoV-2 infection. If positive, the subject was followed and swabs collected on days three, six, nine, and 14 after the first swab day and a serum sample obtained on day 14. All subjects residing with the index case were swabbed following the same sampling schedule. Sera were collected from cohort participants in October 2020 to assess seroprevalence. Swabs were tested by RT-PCR. Sera were tested by Microneutralization Assay to measure the neutralizing antibody titer. Incidence of COVID-19, household secondary attack rate, and seroprevalence in the cohort were determined. The incidence of COVID-19 was 6.9% and the household secondary attack rate was 89.8%. Transmission within households occurred within two-days of confirming the index case. Infections were asymptomatic or mild with symptoms resolving within 10 days. The majority developed a neutralizing antibody titer by day 14 post onset. The overall seroprevalence among cohort participants was 34.8%. These results suggest that within-household transmission is high in Egypt. Asymptomatic or mild illness is common. Most infections seroconvert and have a durable neutralizing antibody titer.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/transmisión , Adolescente , Adulto , COVID-19/sangre , COVID-19/epidemiología , COVID-19/virología , Niño , Estudios de Cohortes , Egipto/epidemiología , Familia , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Estudios Seroepidemiológicos , Adulto Joven
7.
BMC Microbiol ; 23(1): 173, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391715

RESUMEN

BACKGROUND: The emergence of different viral infections calls for the development of new, effective, and safe antiviral drugs. Glycyrrhiza glabra is a well-known herbal remedy possessing antiviral properties. OBJECTIVE: The objective of our research was to evaluate the effectiveness of a newly developed combination of the probiotics Lactobacillus acidophilus and G. glabra root extract against two viral models, namely the DNA virus Herpes simplex virus-1 (HSV-1) and the RNA virus Vesicular Stomatitis Virus (VSV), with regards to their antiviral properties. METHODOLOGY: To examine the antiviral impacts of various treatments, we employed the MTT assay and real-time PCR methodology. RESULTS: The findings of our study indicate that the co-administration of L. acidophilus and G. glabra resulted in a significant improvement in the survival rate of Vero cells, while also leading to a reduction in the titers of Herpes Simplex Virus Type 1 (HSV-1) and Vesicular Stomatitis Virus (VSV) in comparison to cells that were not treated. Additionally, an investigation was conducted on glycyrrhizin, the primary constituent of G. glabra extract, utilizing molecular docking techniques. The results indicated that glycyrrhizin exhibited a greater binding energy score for HSV-1 polymerase (- 22.45 kcal/mol) and VSV nucleocapsid (- 19.77 kcal/mol) in comparison to the cocrystallized ligand (- 13.31 and - 11.44 kcal/mol, respectively). CONCLUSIONS: The combination of L. acidophilus and G. glabra extract can be used to develop a new, natural antiviral agent that is safe and effective.


Asunto(s)
Glycyrrhiza , Herpes Simple , Herpesvirus Humano 1 , Probióticos , Estomatitis Vesicular , Chlorocebus aethiops , Animales , Lactobacillus acidophilus , Antivirales/farmacología , Ácido Glicirrínico , Simulación del Acoplamiento Molecular , Células Vero , Extractos Vegetales/farmacología
8.
Microb Pathog ; 174: 105928, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36470346

RESUMEN

Multiple incursions of different subtypes of highly pathogenic avian influenza (HPAI) A/H5NX viruses have caused widely considerable outbreaks in poultry and hundreds of human infections. Extensive reassortment events associated with currently circulating clade 2.3.4.4b of A/H5NX viruses have been widely recorded. Wild migratory birds contribute to the spillover of diverse viruses throughout their migration flyways. During our active surveillance of avian influenza in Egypt, we successfully isolated and fully characterized HPAI A/H5N5 virus of clade 2.3.4.4b that was detected in a healthy purple heron. The Egyptian H5N5 virus is genotypically similar with the same subtype that was detected in the far east of Russia and several European countries. The antigenic analysis showed that the Egyptian H5N5 virus is distinct from HPAI A(H5N8) viruses in Egypt. The virus preferentially binds to avian-like receptors rather than human-like receptors. Our results showed that the virus caused 100% and 60% lethality in chicken and mice respectively. Increasing active surveillance efforts, monitoring the dynamics of emerging AIVs, and risk assessment implementation should be globally applied especially in hot spot regions like Egypt.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Humanos , Animales , Ratones , Gripe Aviar/epidemiología , Egipto/epidemiología , Filogenia , Animales Salvajes , Subtipo H5N8 del Virus de la Influenza A/genética , Pollos
9.
Biomarkers ; 28(3): 323-340, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36657106

RESUMEN

BACKGROUND: Although it has been shown that the long non-coding RNA (lncRNA) insulin-like growth factor type 1 receptor (IGF1R) antisense imprinted non-protein coding RNA (IRAIN) is downregulated in leukaemia cell lines, its usefulness as a prognostic marker in acute myeloid leukaemia (AML) has not yet been thoroughly investigated. Here, we sought to determine whether the expression of IRAIN is associated with clinical outcome of AML patients. SUBJECTS & METHODS: Using quantitative real-time polymerase chain reaction (qRT-PCR), IRAIN expression levels were assessed in peripheral blood leukocyte samples from 150 patients with AML and 50 healthy controls. Analysis was done on the relationship between IRAIN expression and clinical outcomes in AML patients. RESULTS: When compared to healthy controls, IRAIN expression was markedly reduced in AML patients (P = 0.019). IRAIN expression could distinguish French-American-British (FAB) subtypes of AML (P = 0.024). Low IRAIN expression status was associated with shorter event-free survival (EFS) in the non-t(15;17) cytogenetically abnormal AML subset (P = 0.004). IRAIN downregulation was identified as an independent adverse prognostic marker for complete remission (CR) not only in the in the non-t(15;17) cytogenetically abnormal AML subset (P = 0.006) but also in the AML-M4/M5 subgroup (P = 0.033). CONCLUSION: Aberrantly low IRAIN expression is closely associated with lower CR rates in AML patients, particularly in non-t(15;17) cytogenetically abnormal AML and M4/M5 AML, suggesting that the determination of IRAIN expression level at diagnosis provides valuable prognostic information, serves as a promising biomarker for evaluating treatment response, and helps predicting clinical outcome of AML patients.


Asunto(s)
Leucemia Mieloide Aguda , ARN Largo no Codificante , Humanos , Regulación hacia Abajo , Leucemia Mieloide Aguda/genética , Biomarcadores , Pronóstico
10.
Arch Virol ; 168(3): 82, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36757481

RESUMEN

Active surveillance and studying the virological features of avian-origin influenza viruses are essential for early warning and preparedness for the next potential pandemic. During our active surveillance of avian influenza viruses in wild birds in Egypt in the period 2014-2017, multiple reassortant low-pathogenic avian influenza H7N3 viruses were isolated. In this study, we investigated and compared the infectivity, pathogenicity, and transmission of four different constellation forms of Egyptian H7N3 viruses in chickens and mice and assessed the sensitivity of these viruses to different commercial antiviral drugs in vitro. Considerable variation in virus pathogenicity was observed in mice infected with different H7N3 viruses. The mortality rate ranged from 20 to 100% in infected mice. Infected chickens showed only ocular clinical signs at three days postinfection as well as systemic viral infection in different organs. Efficient virus replication and transmission in chickens was observed within each group, indicating that these subtypes can spread easily from wild birds to poultry without prior adaptation. Mutations in the viral proteins associated with antiviral drug resistance were not detected, and all strains were sensitive to the antiviral drugs tested. In conclusion, all of the viruses studied had the ability to infect mice and chickens. H7N3 viruses circulating among wild birds in Egypt could threaten poultry production and public health.


Asunto(s)
Subtipo H7N3 del Virus de la Influenza A , Gripe Aviar , Animales , Ratones , Subtipo H7N3 del Virus de la Influenza A/genética , Pollos , Egipto/epidemiología , Antivirales/farmacología , Animales Salvajes , Aves de Corral , Virus Reordenados/genética , Filogenia
11.
BMC Infect Dis ; 23(1): 542, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596534

RESUMEN

BACKGROUND: The o severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic has killed millions of people and caused widespread concern around the world. Multiple genetic variants of SARS-CoV-2 have been identified as the pandemic continues. Concerns have been raised about high transmissibility and lower vaccine efficacy against omicron. There is an urgent need to better describe how omicron will impact clinical presentation and vaccine efficacy. This study aims at comparing the epidemiologic, clinical, and genomic characteristics of the omicron variant prevalent during the fifth wave with those of other VOCs between May 2020 and April 2022. METHODS: Epidemiological data were obtained from the National Electronic Diseases Surveillance System. Secondary data analysis was performed on all confirmed COVID-19 patients. Descriptive data analysis was performed for demographics and patient outcome and the incidence of COVID-19 was calculated as the proportion of SARS-CoV-2 confirmed patients out of the total population of Egypt. Incidence and characteristics of the omicron cohort from January- April 2022, were compared to those confirmed from May 2020-December 2021. We performed the whole-genome sequencing of SARS-CoV-2 on 1590 specimens using Illumina sequencing to describe the circulation of the virus lineages in Egypt. RESULTS: A total of 502,629 patients enrolled, including 60,665 (12.1%) reported in the fifth wave. The incidence rate of omicron was significantly lower than the mean of incidences in the previous subperiod (60.1 vs. 86.3/100,000 population, p < 0.001). Symptoms were reported less often in the omicron cohort than in patients with other variants, with omicron having a lower hospitalization rate and overall case fatality rate as well. The omicron cohort tended to stay fewer days at the hospital than did those with other variants. We analyzed sequences of 2433 (1590 in this study and 843 were obtained from GISAID platform) Egyptian SARS-CoV-2 full genomes. The first wave that occurred before the emergence of global variants of concern belonged to the B.1 clade. The second and third waves were associated with C.36. Waves 4 and 5 included B.1.617.2 and BA.1 clades, respectively. CONCLUSIONS: The study indicated that Omicron-infected patients had milder symptoms and were less likely to be hospitalized; however, patients hospitalized with omicron had a more severe course and higher fatality rates than those hospitalized with other variants. Our findings demonstrate the importance of combining epidemiological data and genomic analysis to generate actionable information for public health decision-making.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Egipto/epidemiología , Gravedad del Paciente , Evolución Molecular
12.
Appl Microbiol Biotechnol ; 107(11): 3763-3778, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37079062

RESUMEN

The resistance development is an increasing global health risk that needs innovative solutions. Repurposing drugs to serve as anti-virulence agents is suggested as an advantageous strategy to diminish bacterial resistance development. Bacterial virulence is controlled by quorum sensing (QS) system that orchestrates the expression of biofilm formation, motility, and virulence factors production as enzymes and virulent pigments. Interfering with QS could lead to bacterial virulence mitigation without affecting bacterial growth that does not result in bacterial resistance development. This study investigated the probable anti-virulence and anti-QS activities of α-adrenoreceptor blocker doxazosin against Proteus mirabilis and Pseudomonas aeruginosa. Besides in silico study, in vitro and in vivo investigations were conducted to assess the doxazosin anti-virulence actions. Doxazosin significantly diminished the biofilm formation and release of QS-controlled Chromobacterium violaceum pigment and virulence factors in P. aeruginosa and P. mirabilis, and downregulated the QS encoding genes in P. aeruginosa. Virtually, doxazosin interfered with QS proteins, and in vivo protected mice against P. mirabilis and P. aeruginosa. The role of the membranal sensors as QseC and PmrA was recognized in enhancing the Gram-negative virulence. Doxazosin downregulated the membranal sensors PmR and QseC encoding genes and could in silico interfere with them. In conclusion, this study preliminary documents the probable anti-QS and anti-virulence activities of doxazosin, which indicate its possible application as an alternative or in addition to antibiotics. However, extended toxicological and pharmacological investigations are essential to approve the feasible clinical application of doxazosin as novel efficient anti-virulence agent. KEY POINTS: • Anti-hypertensive doxazosin acquires anti-quorum sensing activities • Doxazosin diminishes the virulence of Proteus mirabilis and Pseudomonas aeruginosa • Doxazosin could dimmish the bacterial espionage.


Asunto(s)
Biopelículas , Factores de Virulencia , Ratones , Animales , Factores de Virulencia/metabolismo , Doxazosina/farmacología , Reposicionamiento de Medicamentos , Percepción de Quorum , Antibacterianos/farmacología , Antibacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo
13.
J Mol Struct ; 1276: 134690, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36465802

RESUMEN

In the current investigation, two novel series of (tetrahydro)thioquinazoline-N-arylacetamides and (tetrahydro)thioquinazoline-N-arylacetohydrazides were designed, synthesized and investigated for their antiviral activity against SARS-CoV-2. The thioquinazoline-N-arylacetamide 17g as well as the tetrahydrothioquinazoline-N-arylacetohydrazides 18c and 18f showed potent antiviral activity with IC50 of 21.4, 38.45 and 26.4 µM, respectively. In addition, 18c and 18f demonstrated potential selectivity toward the SARS-CoV-2 over the host cells with SI of 10.67 and 16.04, respectively. Further evaluation of the mechanism of action of the three derivatives 17g, 18c, and 18f displayed that they can inhibit the virus at the adsorption as well as at the replication stages, in addition to their virucidal properties. In addition, 17g, 18c, and 18f demonstrated satisfactory physicochemical properties as well as drug-likeness properties to be further optimized for the discovery of novel antiviral agents. The docking simulation on Mpro binding site predicted the binding pattern of the target compounds rationalizing their differential activity based on their hydrophobic interaction and fitting in the hydrophobic S2 subsite of the binding site.

14.
Angew Chem Int Ed Engl ; 62(14): e202218094, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36744674

RESUMEN

Metal coordination compound (MCC) glasses [e.g., metal-organic framework (MOF) glass, coordination polymer glass, and metal inorganic-organic complex (MIOC) glass] are emerging members of the hybrid glass family. So far, a limited number of crystalline MCCs can be converted into glasses by melt-quenching. Here, we report a universal wet-chemistry method, by which the super-sized supramolecular MIOC glasses can be synthesized from non-meltable MOFs. Alcohol and acid were used as agents to inhibit crystallization. The MIOC glasses demonstrate unique features including high transparency, shaping capability, and anisotropic network. Directional photoluminescence with a large polarization ratio (≈47 %) was observed from samples doped with organic dyes. This crystallization-suppressing approach enables fabrication of super-sized MCC glasses, which cannot be achieved by conventional vitrification methods, and thus allows for exploring new MCC glasses possessing photonic functionalities.

15.
Arch Microbiol ; 204(11): 686, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319767

RESUMEN

The present study aims to screen the anti-bacterial activity and synergistic interaction of A. graecorum Boiss. ethanolic extract with two food preservatives against five strains of foodborne bacteria. Disk diffusion and minimum inhibitory concentration were used for anti-bacterial assay, checkerboard assay and time-kill curve were used for the combination studies. HPLC analysis and molecular docking study were performed to corroborate the in vitro results. The ethanolic extract showed anti-bacterial activity against all tested bacterial strains with inhibition zones from 7.5 to 9.3 mm and MIC values ranged between 1.2 and 1.8 mg mL-1. The combination of the ethanolic extract with Na-benzoate or Na-propionate resulted in synergistic and additive interactions against the tested bacteria with fractional inhibitory concentration index (FICI) ranges 0.31-0.63 and no antagonism was shown. Time-kill curve assay showed that the synergistic and additive combinations have inhibitory effects on the tested strains. The ethanolic extract combination with Na-benzoate or Na-propionate can be used for development new sources of food preservatives. Testing new different natural plant extracts with food preservatives will help develop new anti-bacterial agents.


Asunto(s)
Fabaceae , Conservantes de Alimentos , Conservantes de Alimentos/farmacología , Propionatos/farmacología , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Etanol , Bacterias , Benzoatos/farmacología
16.
J Enzyme Inhib Med Chem ; 37(1): 1821-1837, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35762086

RESUMEN

Current medical approaches to control the Covid-19 pandemic are either to directly target the SARS-CoV-2 via innovate a defined drug and a safe vaccine or indirectly target the medical complications of the virus. One of the indirect strategies for fighting this virus has been mainly dependent on using anti-inflammatory drugs to control cytokines storm responsible for severe health complications. We revealed the discovery of novel fused pyrrolopyrimidine derivatives as promising antioxidant and anti-inflammatory agents. The newly synthesised compounds were evaluated for their in vitro anti-inflammatory activity using RAW264.7 cells after stimulation with lipopolysaccharides (LPS). The results revealed that 3a, 4b, and 8e were the most potent analogues. Molecular docking and simulations of these compounds against COX-2, TLR-2 and TLR-4 respectively was performed. The former results were in line with the biological data and proved that 3a, 4b and 8e have potential antioxidant and anti-inflammatory effects.


Asunto(s)
Antioxidantes , Tratamiento Farmacológico de COVID-19 , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Pirimidinas , Pirroles , SARS-CoV-2
17.
Mar Drugs ; 20(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35323478

RESUMEN

Several natural products recovered from a marine-derived Aspergillus niger were tested for their inhibitory activity against SARS CoV-2 in vitro. Aurasperone A (3) was found to inhibit SARS CoV-2 efficiently (IC50 = 12.25 µM) with comparable activity with the positive control remdesivir (IC50 = 10.11 µM). Aurasperone A exerted minimal cytotoxicity on Vero E6 cells (CC50 = 32.36 mM, SI = 2641.5) and it was found to be much safer than remdesivir (CC50 = 415.22 µM, SI = 41.07). To putatively highlight its molecular target, aurasperone A was subjected to molecular docking against several key-viral protein targets followed by a series of molecular dynamics-based in silico experiments that suggested Mpro to be its primary viral protein target. More potent anti-SARS CoV-2 Mpro inhibitors can be developed according to our findings presented in the present investigation.


Asunto(s)
Antivirales/farmacología , Cromonas/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/aislamiento & purificación , Aspergillus niger/química , Chlorocebus aethiops , Cromonas/aislamiento & purificación , Proteasas 3C de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/aislamiento & purificación , ARN Helicasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
18.
Proc Natl Acad Sci U S A ; 116(31): 15635-15644, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31300537

RESUMEN

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Several genome sequencing studies have provided comprehensive CRC genomic datasets. Likewise, in our previous study, we performed genome-wide Sleeping Beauty transposon-based mutagenesis screening in mice and provided comprehensive datasets of candidate CRC driver genes. However, functional validation for most candidate CRC driver genes, which were commonly identified from both human and mice, has not been performed. Here, we describe a platform for functionally validating CRC driver genes that utilizes CRISPR-Cas9 in mouse intestinal tumor organoids and human CRC-derived organoids in xenograft mouse models. We used genetically defined benign tumor-derived organoids carrying 2 frequent gene mutations (Apc and Kras mutations), which act in the early stage of CRC development, so that we could clearly evaluate the tumorigenic ability of the mutation in a single gene. These studies showed that Acvr1b, Acvr2a, and Arid2 could function as tumor suppressor genes (TSGs) in CRC and uncovered a role for Trp53 in tumor metastasis. We also showed that co-occurrent mutations in receptors for activin and transforming growth factor-ß (TGF-ß) synergistically promote tumorigenesis, and shed light on the role of activin receptors in CRC. This experimental system can also be applied to mouse intestinal organoids carrying other sensitizing mutations as well as organoids derived from other organs, which could further contribute to identification of novel cancer driver genes and new drug targets.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias Colorrectales , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Proteínas de Neoplasias , Organoides , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Ratones , Ratones Endogámicos NOD , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Organoides/metabolismo , Organoides/patología
19.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361877

RESUMEN

The development of bacterial resistance to antibiotics is an increasing public health issue that worsens with the formation of biofilms. Quorum sensing (QS) orchestrates the bacterial virulence and controls the formation of biofilm. Targeting bacterial virulence is promising approach to overcome the resistance increment to antibiotics. In a previous detailed in silico study, the anti-QS activities of twenty-two ß-adrenoreceptor blockers were screened supposing atenolol as a promising candidate. The current study aims to evaluate the anti-QS, anti-biofilm and anti-virulence activities of the ß-adrenoreceptor blocker atenolol against Gram-negative bacteria Serratia marcescens, Pseudomonas aeruginosa, and Proteus mirabilis. An in silico study was conducted to evaluate the binding affinity of atenolol to S. marcescens SmaR QS receptor, P. aeruginosa QscR QS receptor, and P. mirabilis MrpH adhesin. The atenolol anti-virulence activity was evaluated against the tested strains in vitro and in vivo. The present finding shows considerable ability of atenolol to compete with QS proteins and significantly downregulated the expression of QS- and virulence-encoding genes. Atenolol showed significant reduction in the tested bacterial biofilm formation, virulence enzyme production, and motility. Furthermore, atenolol significantly diminished the bacterial capacity for killing and protected mice. In conclusion, atenolol has potential anti-QS and anti-virulence activities against S. marcescens, P. aeruginosa, and P. mirabilis and can be used as an adjuvant in treatment of aggressive bacterial infections.


Asunto(s)
Atenolol , Factores de Virulencia , Ratones , Animales , Atenolol/farmacología , Atenolol/metabolismo , Factores de Virulencia/genética , Percepción de Quorum , Biopelículas , Bacterias Gramnegativas , Pseudomonas aeruginosa , Serratia marcescens/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteus mirabilis/metabolismo , Proteínas Bacterianas/metabolismo
20.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293055

RESUMEN

The increasing prevalence of obesity has become a demanding issue in both high-income and low-income countries. Treating obesity is challenging as the treatment options have many limitations. Recently, diet modification has been commonly applied to control or prevent obesity and its risks. In this study, we investigated novel therapeutic approaches using a combination of a potential probiotic source with prebiotics. Forty-eight adult male Sprague-Dawley rats were selected and divided into seven groups (eight rats per group). The first group was fed a high-fat diet, while the second group was a negative control. The other five groups were orally administered with a probiotic, Lactiplantibacillus plantarum (L. plantarum), and potential prebiotics sources (chia seeds, green tea, and chitosan) either individually or in combination for 45 days. We collected blood samples to analyze the biochemical parameters and dissected organs, including the liver, kidney, and pancreas, to evaluate obesity-related injuries. We observed a more significant decrease in the total body weight by combining these approaches than with individual agents. Moreover, treating the obese rats with this combination decreased serum catalase, superoxide dismutase, and liver malondialdehyde levels. A histopathological examination revealed a reduction in obesity-related injuries in the liver, kidney, and pancreas. Further docking studies indicated the potential role of chia seeds and green tea components in modulating obesity and its related problems. Therefore, we suggest that the daily administration of a pre- and probiotic combination may reduce obesity and its related problems.


Asunto(s)
Quitosano , Hiperlipidemias , Ratas , Masculino , Animales , , Catalasa , Quitosano/farmacología , Quitosano/uso terapéutico , Ratas Sprague-Dawley , Obesidad/tratamiento farmacológico , Obesidad/patología , Dieta Alta en Grasa/efectos adversos , Semillas , Inflamación/tratamiento farmacológico , Superóxido Dismutasa , Malondialdehído
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA