Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.216
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 164(5): 896-910, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919428

RESUMEN

Nuclear factor κB (NF-κB), a key activator of inflammation, primes the NLRP3-inflammasome for activation by inducing pro-IL-1ß and NLRP3 expression. NF-κB, however, also prevents excessive inflammation and restrains NLRP3-inflammasome activation through a poorly defined mechanism. We now show that NF-κB exerts its anti-inflammatory activity by inducing delayed accumulation of the autophagy receptor p62/SQSTM1. External NLRP3-activating stimuli trigger a form of mitochondrial (mt) damage that is caspase-1- and NLRP3-independent and causes release of direct NLRP3-inflammasome activators, including mtDNA and mtROS. Damaged mitochondria undergo Parkin-dependent ubiquitin conjugation and are specifically recognized by p62, which induces their mitophagic clearance. Macrophage-specific p62 ablation causes pronounced accumulation of damaged mitochondria and excessive IL-1ß-dependent inflammation, enhancing macrophage death. Therefore, the "NF-κB-p62-mitophagy" pathway is a macrophage-intrinsic regulatory loop through which NF-κB restrains its own inflammation-promoting activity and orchestrates a self-limiting host response that maintains homeostasis and favors tissue repair.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Choque Térmico/metabolismo , Inflamasomas/metabolismo , Mitocondrias/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Choque Térmico/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1 , Ubiquitina-Proteína Ligasas/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(39): e2308238120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37729203

RESUMEN

Vibrio cholerae, the causative agent of the disease cholera, is responsible for multiple pandemics. V. cholerae binds to and colonizes the gastrointestinal tract within the human host, as well as various surfaces in the marine environment (e.g., zooplankton) during interepidemic periods. A large adhesin, the Flagellar Regulated Hemagglutinin A (FrhA), enhances binding to erythrocytes and epithelial cells and enhances intestinal colonization. We identified a peptide-binding domain (PBD) within FrhA that mediates hemagglutination, binding to epithelial cells, intestinal colonization, and facilitates biofilm formation. Intriguingly, this domain is also found in the ice-binding protein of the Antarctic bacterium Marinomonas primoryensis, where it mediates binding to diatoms. Peptide inhibitors of the M. primoryensis PBD inhibit V. cholerae binding to human cells as well as to diatoms and inhibit biofilm formation. Moreover, the M. primoryensis PBD inserted into FrhA allows V. cholerae to bind human cells and colonize the intestine and also enhances biofilm formation, demonstrating the interchangeability of the PBD from these bacteria. Importantly, peptide inhibitors of PBD reduce V. cholerae intestinal colonization in infant mice. These studies demonstrate how V. cholerae uses a PBD shared with a diatom-binding Antarctic bacterium to facilitate intestinal colonization in humans and biofilm formation in the environment.


Asunto(s)
Diatomeas , Vibrio cholerae , Animales , Humanos , Lactante , Ratones , Bacterias , Agregación Celular , Tracto Gastrointestinal , Intestinos , Vibrio cholerae/genética
3.
Hum Genomics ; 18(1): 6, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287462

RESUMEN

BACKGROUND: Congenital heart defects (CHDs) are the heart structural malformations present at birth. Septal defects account for 40% of CHD, including atrial, ventricular and atrioventricular septal defects. In Pakistan, the prevalence of CHD is 3.4 in 1000, and a study estimated that 60,000 babies are born with CHD annually. Methylenetetrahydrofolate reductase (MTHFR), a chief enzyme, involved in the folate metabolism. The missense mutation, C677T (rs1801133), exists in MTHFR gene, results in a MTHFR thermolabile variant having low enzymatic activity. The study is aim to identify the MTHFR C677T variant association with septal defects. METHODS: Samples of 194 CHD patients (age [Formula: see text]= 5.8 ± 5.1) and 50 normal echo controls (age [Formula: see text]= 6.0 ± 4.9), confirmed by pediatric consultant, were collected. Extracted DNA, quantified by agarose gel electrophoresis and nanodrop, was screened for SNP by high-resolution melting (HRM). Further, HRM results were confirmed using restriction analysis and sequencing. HRM was simply and precisely genotyped the samples within 3 h at low cost. RESULTS: Genotypic data suggested that heterozygous mutant (CT) was frequent in congenital septal defect patients (0.26) which was higher than controls (0.143), p > 0.05. Mutant (TT) genotype was not found in this study. CONCLUSIONS: rs1801133 has lack of significant association with congenital septal defects. The absence of TT genotype in this study suggesting the role of natural selection in targeted population. HRM is an easy, fast and next generation of PCR, which may be used for applied genomics.


Asunto(s)
Cardiopatías Congénitas , Metilenotetrahidrofolato Reductasa (NADPH2) , Recién Nacido , Humanos , Niño , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Pakistán/epidemiología , Cardiopatías Congénitas/genética , Genotipo , Reacción en Cadena de la Polimerasa , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles
4.
Cell ; 140(2): 197-208, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20141834

RESUMEN

Epidemiological studies indicate that overweight and obesity are associated with increased cancer risk. To study how obesity augments cancer risk and development, we focused on hepatocellular carcinoma (HCC), the common form of liver cancer whose occurrence and progression are the most strongly affected by obesity among all cancers. We now demonstrate that either dietary or genetic obesity is a potent bona fide liver tumor promoter in mice. Obesity-promoted HCC development was dependent on enhanced production of the tumor-promoting cytokines IL-6 and TNF, which cause hepatic inflammation and activation of the oncogenic transcription factor STAT3. The chronic inflammatory response caused by obesity and enhanced production of IL-6 and TNF may also increase the risk of other cancers.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Interleucina-6/inmunología , Neoplasias Hepáticas/inmunología , Obesidad/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/etiología , Proliferación Celular , Dietilnitrosamina , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Hepatitis/etiología , Hepatitis/inmunología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/etiología , Masculino , Ratones , Obesidad/complicaciones , Factor de Transcripción STAT3/metabolismo
5.
Nature ; 568(7753): 551-556, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971823

RESUMEN

Synthetic lethality-an interaction between two genetic events through which the co-occurrence of these two genetic events leads to cell death, but each event alone does not-can be exploited for cancer therapeutics1. DNA repair processes represent attractive synthetic lethal targets, because many cancers exhibit an impairment of a DNA repair pathway, which can lead to dependence on specific repair proteins2. The success of poly(ADP-ribose) polymerase 1 (PARP-1) inhibitors in cancers with deficiencies in homologous recombination highlights the potential of this approach3. Hypothesizing that other DNA repair defects would give rise to synthetic lethal relationships, we queried dependencies in cancers with microsatellite instability (MSI), which results from deficient DNA mismatch repair. Here we analysed data from large-scale silencing screens using CRISPR-Cas9-mediated knockout and RNA interference, and found that the RecQ DNA helicase WRN was selectively essential in MSI models in vitro and in vivo, yet dispensable in models of cancers that are microsatellite stable. Depletion of WRN induced double-stranded DNA breaks and promoted apoptosis and cell cycle arrest selectively in MSI models. MSI cancer models required the helicase activity of WRN, but not its exonuclease activity. These findings show that WRN is a synthetic lethal vulnerability and promising drug target for MSI cancers.


Asunto(s)
Inestabilidad de Microsatélites , Repeticiones de Microsatélite/genética , Neoplasias/genética , Mutaciones Letales Sintéticas/genética , Helicasa del Síndrome de Werner/genética , Apoptosis/genética , Sistemas CRISPR-Cas/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Humanos , Modelos Genéticos , Neoplasias/patología , Interferencia de ARN , Proteína p53 Supresora de Tumor/metabolismo , Helicasa del Síndrome de Werner/deficiencia
6.
Yeast ; 41(6): 401-417, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38708451

RESUMEN

To develop a cost-effective microbial cell factory for the production of biofuels and biochemicals, an understanding of tolerant mechanisms is vital for the construction of robust host strains. Here, we characterized a new function of a key metabolic transcription factor named Znf1 and its involvement in stress response in Saccharomyces cerevisiae to enhance tolerance to advanced biofuel, isobutanol. RNA-sequencing analysis of the wild-type versus the znf1Δ deletion strains in glucose revealed a new role for transcription factor Znf1 in the pentose phosphate pathway (PPP) and energy generation. The gene expression analysis confirmed that isobutanol induces an adaptive cell response, resulting in activation of ATP1-3 and COX6 expression. These genes were Znf1 targets that belong to the electron transport chain, important to produce ATPs. Znf1 also activated PPP genes, required for the generation of key amino acids, cellular metabolites, and maintenance of NADP/NADPH redox balance. In glucose, Znf1 also mediated the upregulation of valine biosynthetic genes of the Ehrlich pathway, namely ILV3, ILV5, and ARO10, associated with the generation of key intermediates for isobutanol production. Using S. cerevisiae knockout collection strains, cells with deleted transcriptional regulatory gene ZNF1 or its targets displayed hypersensitivity to isobutanol and acid inhibitors; in contrast, overexpression of ZNF1 enhanced cell survival. Thus, the transcription factor Znf1 functions in the maintenance of energy homeostasis and redox balance at various checkpoints of yeast metabolic pathways. It ensures the rapid unwiring of gene transcription in response to toxic products/by-products generated during biofuel production. Importantly, we provide a new approach to enhance strain tolerance during the conversion of glucose to biofuels.


Asunto(s)
Adenosina Trifosfato , Butanoles , Regulación Fúngica de la Expresión Génica , Vía de Pentosa Fosfato , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vía de Pentosa Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Butanoles/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adenosina Trifosfato/metabolismo , Glucosa/metabolismo , Biocombustibles
7.
Microb Pathog ; 189: 106589, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382627

RESUMEN

Comprehensive safety assessment of potential probiotic strains is crucial in the selection of risk-free strains for clinical translation. This study aimed to evaluate the biosafety of Limosilactobacillus fermentum NCDC 400, a potential probiotic strain, using oral toxicity tests in a Swiss albino mouse model. Mice were orally gavaged with low (108 CFU/mouse/day) and high (1010 CFU/mouse/day) doses of NCDC 400 for 14 (acute), 28 (subacute), and 90 (subchronic) days to assess behavioral, hematological, biochemical, immunological, and histological effects. The administration of NCDC 400 did not result in any observable adverse effects on general health parameters, including body weight, feed and water intake, and organ indices. Hematological and biochemical parameters, such as glucose, serum enzymes, urea, creatinine, serum minerals, total serum proteins, and lipid profile, remained largely unaffected by the test strain. Notably, NCDC 400 administration led to a significant reduction in harmful intestinal enzymes and improvement in gut health indices, as indicated by fecal pH, lactate, ammonia, and short-chain fatty acids. There were no instances of bacterial translocation of NCDC 400 to blood or extra-intestinal organs. Immune homeostasis was not adversely affected by repeated exposure to NCDC 400 in all three oral toxicity studies. Histopathological examination revealed no strain-related changes in various tissues. Based on these findings, a dose of 1010 CFU/mouse/day was considered as the No Observable Effect Level (NOEL) in healthy mice. In conclusion, this study demonstrates the safe and non-toxic behavior of L. fermentum NCDC 400. The results support and ensure the safety and suitability for clinical trials and eventual translation into clinical practice as potential probiotic.


Asunto(s)
Limosilactobacillus fermentum , Probióticos , Ratones , Animales , Modelos Animales de Enfermedad , Probióticos/metabolismo , Pruebas de Toxicidad
8.
Artículo en Inglés | MEDLINE | ID: mdl-38769727

RESUMEN

BACKGROUND: The Evolut self-expanding valve (SEV) systems (Medtronic), were designed to accommodate varying valve sizes and reduce paravalvular leak (PVL) while maintaining a low delivery profile. These systems have evolved between product generations, alongside valve deployment techniques changing over time. AIMS: This study aimed to examine whether these changes impacted clinical outcomes. METHODS: EPROMPT is a prospective, investigator-initiated, postmarketing registry of consecutive patients undergoing transfemoral transcatheter aortic valve replacement (TAVR) using the Evolut PRO/PRO+ SEV system. A total of 300 patients were divided into three consecutive cohorts of 100 patients according to implantation date (January to October 2018, November 2018 to July 2020, and August 2020 to November 2021). Procedural and clinical outcomes over these time periods were compared. RESULTS: Valve Academic Research Consortium (VARC)-2 device implantation success improved over time (70.0% vs. 78.0% vs. 88.8%, p = 0.01), with a similar trend for VARC-3 device success (94.7% vs. 81.7% vs. 96.8%, p < 0.001). PVL (all degrees) frequency was likewise reduced over time (31.0% vs. 17.0% vs. 19.2%, p = 0.04). Furthermore, a trend was noticed toward shorter procedure times and shorter length of stay. However, postprocedural pacemaker implantation rates did not significantly differ (15.2% vs. 21.1% vs. 14.0%, p = 0.43). CONCLUSION: During a 3-year period, we demonstrated better TAVR outcomes with newer SEV iterations, alongside changes in implantation techniques, which might result in better procedural and clinical outcomes. However, we did not see a significant change in peri-procedural pacemaker rates for SEV.

9.
Langmuir ; 40(21): 10835-10846, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38740571

RESUMEN

The advent of two-dimensional layered materials has bolstered the development of catalytic endeavors for energy conversion and storage. MXenes (transition metal carbides/nitrides) have already consolidated their candidature in the past decade due to their enhanced compositional and structural tunabilities through surface modifications. Perseverant research in engineering MXene based materials has led to the inception of MBenes (transition metal borides) as promising catalytic systems for energy-driven operations. Physicochemical superiorities of MBenes such as escalated conductivity and hydrophilicity, unique surface and geometrical domains, and higher stability and modulus of elasticity provide the reaction-friendly milieu to exploit these materials. Nevertheless, the research on MBenes is embryonic and requires the thorough realization of their scientific significance. Herein, we aim to discuss the advancements, challenges, and outlooks of MBenes with respect to their energy conversion HER, CO2RR, and NRR applications.

10.
Langmuir ; 40(20): 10414-10432, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728278

RESUMEN

To mimic the carbon cycle at a kinetically rapid pace, the sustainable conversion of omnipresent CO2 to value-added chemical feedstock and hydrocarbon fuels implies a remarkable prototype for utilizing released CO2. Porous organic polymers (POPs) have been recognized as remarkable catalytic systems for achieving large-scale applicability in energy-driven processes. POPs offer mesoporous characteristics, higher surface area, and superior optoelectronic properties that lead to their relatively advanced activity and selectivity for CO2 conversion. In comparison to the metal organic frameworks, POPs exhibit an enhanced tendency toward membrane formation, which governs their excellent stability with regard to remarkable ultrathinness and tailored pore channels. The structural ascendancy of POPs can be effectively utilized to develop cost-effective catalytic supports for energy conversion processes to leapfrog over conventional noble metal catalysts that have nonlinear techno-economic equilibrium. Herein, we precisely surveyed the functionality of POPs from scratch, classified it, and provided a critical commentary of its current methodological advancements and photo/electrochemical achievements in the CO2 reduction reaction.

11.
Langmuir ; 40(11): 6004-6015, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451499

RESUMEN

4-Chlorophenol (4CP) is a well-known environmental contaminant often detected in wastewater, generally arising from industrial processes such as chemical manufacture, pharmaceutical production, and pesticide formulation. 4CP is a matter of great concern since it is persistent and has the potential to have harmful impacts on both aquatic ecosystems and human health, owing to its hazardous and mutagenic properties. Hence, degradation of 4CP is of utmost significance. This research investigates the photocatalytic degradation of 4CP using a novel Z-scheme heterojunction nanocomposite composed of MXene and ZIF-9. The nanocomposite is synthesized through a two-step hydrothermal method and thoroughly characterized by using XRD, SEM, UV-visible spectroscopy, zeta potential, and electrochemical impedance spectroscopy studies, confirming successful fabrication with improved surface properties. The comparative photocatalytic degradation studies between pristine materials and the nanocomposite were performed, and significant enhancement in performance was observed. The effect of pH on the degradation efficiency is also explored and correlated with the surface charge. The Z-scheme photocatalysis mechanism is proposed, which is supported by time-resolved photoluminescence studies and scavenger experiments. The reusability of the nanocomposite is also evaluated. The study contributes to the development of efficient and sustainable photocatalysts for wastewater treatment.

12.
Inorg Chem ; 63(1): 304-315, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38146688

RESUMEN

The simultaneous realization of sustainable energy and gas sensors dealing with the emission of pollutants is indispensable as the former thrives on the minimization of the latter. However, there is a dearth of multifunctional nanocatalysts in the literature. This ascertains the importance of multifunctional semiconductors which can be utilized in H2 generation via overall water splitting and in the gas sensing of global pollutants such as NH3. MoO3-decorated TiO2 Z-scheme heterostructures exceptionally escalate the photochemical and photo/electrochemical H2 evolution performance and gas sensing response of TiO2 owing to the synergistic relationship between TiO2 and MoO3. Extensive structural, morphological, and optical characterizations, theoretical studies, and XPS results were exploited to develop a mechanistic framework of photochemical H2 evolution. The photochemical response of the optimum TiO2-MoO3 composition (20 wt % MoO3-TiO2) was found to be nearly 12- and 20-fold superior to the pristine TiO2 and MoO3 photocatalysts, respectively, with the remarkable H2 evolution rate of 9.18 mmol/g/h and AQY of 36.02%. In addition, 20 wt % MoO3-TiO2 also showed advanced photo/electrochemical efficiency with 0.61/0.7 V overpotential values toward HER due to the higher electrochemically active surface area and Tafel slope as low as 65 mV/dec. The gas sensing response of 20 wt % MoO3-TiO2 toward NH3 gas turned out to be 2.5-fold higher than that of the pristine TiO2 gas sensor.

13.
Biometals ; 37(3): 587-607, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38267778

RESUMEN

Inorganic arsenic is a well-known environmental toxicant, and exposure to this metalloid is strongly linked with severe and extensive toxic effects in various organs including the lungs. In the present study, we aimed to investigate the acute and chronic effects of arsenite exposure on pulmonary tissue in young and adult mice. In brief, young and adult female Balb/C mice were exposed to 3 and 30 ppm arsenite daily via drinking water for 30 and 90 days. Subsequently, the animals were sacrificed and various histological and immunohistochemistry (IHC) analyses were performed using lung tissues. Our findings showed arsenite was found to cause dose-dependent pathological changes such as thickening of the alveolar septum, inflammatory cell infiltrations and lung fibrosis in young and adult mice. In addition, arsenite exposure significantly increased the expression of inflammatory markers NF-κB and TNF-α, indicating that arsenite-exposed mice suffered from severe lung inflammation. Moreover, the IHC analysis of fibrotic proteins demonstrated an increased expression of TGF-ß1, α-SMA, vimentin and collagen-I in the arsenite-exposed mice compared to the control mice. This was accompanied by apoptosis, which was indicated by the upregulated expression of caspase-3 in arsenite-exposed mice compared to the control. Adult mice were generally found to be more prone to arsenite toxicity during chronic exposure relative to their younger counterparts. Overall, our findings suggest that arsenite in drinking water may induce dose-dependent and age-dependent structural and functional impairment in the lungs through elevating inflammation and fibrotic proteins.


Asunto(s)
Apoptosis , Arsenitos , Pulmón , Ratones Endogámicos BALB C , Animales , Arsenitos/toxicidad , Arsenitos/administración & dosificación , Apoptosis/efectos de los fármacos , Femenino , Ratones , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Administración Oral , Inflamación/inducido químicamente , Inflamación/patología , Inflamación/metabolismo
14.
Environ Res ; 250: 118487, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38365055

RESUMEN

With the increasing population worldwide more wastewater is created by human activities and discharged into the waterbodies. This is causing the contamination of aquatic bodies, thus disturbing the marine ecosystems. The rising population is also posing a challenge to meet the demands of fresh drinking water in the water-scarce regions of the world, where drinking water is made available to people by desalination process. The fouling of composite membranes remains a major challenge in water desalination. In this innovative study, we present a novel probabilistic approach to analyse and anticipate the predominant fouling mechanisms in the filtration process. Our establishment of a robust theoretical framework hinges upon the utilization of both the geometric law and the Hermia model, elucidating the concept of resistance in series (RIS). By manipulating the transmembrane pressure, we demonstrate effective management of permeate flux rate and overall product quality. Our investigations reveal a decrease in permeate flux in three distinct phases over time, with the final stage marked by a significant reduction due to the accumulation of a denser cake layer. Additionally, an increase in transmembrane pressure leads to a correlative rise in permeate flux, while also exerting negative effects such as membrane ruptures. Our study highlights the minimal immediate impact of the intermediate blocking mechanism (n = 1) on permeate flux, necessitating continuous monitoring for potential long-term effects. Additionally, we note a reduced membrane selectivity across all three fouling types (n = 0, n = 1.5, n = 2). Ultimately, our findings indicate that the membrane undergoes complete fouling with a probability of P = 0.9 in the presence of all three fouling mechanisms. This situation renders the membrane unable to produce water at its previous flow rate, resulting in a significant reduction in the desalination plant's productivity. I have demonstrated that higher pressure values notably correlate with increased permeate flux across all four membrane types. This correlation highlights the significant role of TMP in enhancing the production rate of purified water or desired substances through membrane filtration systems. Our innovative approach opens new perspectives for water desalination management and optimization, providing crucial insights into fouling mechanisms and proposing potential strategies to address associated challenges.


Asunto(s)
Filtración , Membranas Artificiales , Purificación del Agua , Purificación del Agua/métodos , Purificación del Agua/instrumentación , Filtración/métodos , Filtración/instrumentación , Incrustaciones Biológicas/prevención & control
15.
Biotechnol Appl Biochem ; 71(2): 402-413, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287712

RESUMEN

Malonyl-CoA serves as the main building block for the biosynthesis of many important polyketides, as well as fatty acid-derived compounds, such as biofuel. Escherichia coli, Corynebacterium gultamicum, and Saccharomyces cerevisiae have recently been engineered for the biosynthesis of such compounds. However, the developed processes and strains often have insufficient productivity. In the current study, we used enzyme-engineering approach to improve the binding of acetyl-CoA with ACC. We generated different mutations, and the impact was calculated, which reported that three mutations, that is, S343A, T347W, and S350W, significantly improve the substrate binding. Molecular docking investigation revealed an altered binding network compared to the wild type. In mutants, additional interactions stabilize the binding of the inner tail of acetyl-CoA. Using molecular simulation, the stability, compactness, hydrogen bonding, and protein motions were estimated, revealing different dynamic properties owned by the mutants only but not by the wild type. The findings were further validated by using the binding-free energy (BFE) method, which revealed these mutations as favorable substitutions. The total BFE was reported to be -52.66 ± 0.11 kcal/mol for the wild type, -55.87 ± 0.16 kcal/mol for the S343A mutant, -60.52 ± 0.25 kcal/mol for T347W mutant, and -59.64 ± 0.25 kcal/mol for the S350W mutant. This shows that the binding of the substrate is increased due to the induced mutations and strongly corroborates with the docking results. In sum, this study provides information regarding the essential hotspot residues for the substrate binding and can be used for application in industrial processes.


Asunto(s)
Acetil-CoA Carboxilasa , Streptomyces antibioticus , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Streptomyces antibioticus/metabolismo , Acetilcoenzima A/genética , Simulación del Acoplamiento Molecular , Mutación , Saccharomyces cerevisiae/metabolismo , Escherichia coli/metabolismo
16.
Lung ; 202(1): 73-81, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38129333

RESUMEN

PURPOSE: Determining the cause of interstitial lung disease (ILD) remains challenging. While surgical lung biopsy remains the gold standard approach, risks associated with it may be prohibitive. Transbronchial lung cryobiopsy (TBLC) is a minimally invasive alternative with an improved safety profile and acceptable diagnostic accuracy. We retrospectively assessed whether the use of Cone Beam computed tomography guidance for TBLC (TBLC-CBCT) improves safety and diagnostic yield compared to performing TBLC with fluoroscopic guidance (TBLC-F). METHODS: A retrospective cohort review of 120 patients presenting for evaluation of newly diagnosed ILD was performed. Demographic data, pulmonary function test values, chest imaging pattern, procedural information, and final multidisciplinary discussion (MDD) diagnosis were recorded. RESULTS: 62 patients underwent TBLC-F and 58 underwent TBLC-CBCT. Patients undergoing TBLC-CBCT were older (67.86 ± 10.97 vs 61.45 ± 12.77 years, p = 0.004) and had a higher forced vital capacity percent predicted (73.80 ± 17.32% vs 66.00 ± 17.45%, p = 0.03) compared to the TBLC-F group. The average probe-to-pleura distance was 5.1 ± 2.3 mm in the TBLC-CBCT group with 4.0 ± 0.3 CBCT spins performed. Pneumothorax occurred more often in the TBLC-F group (n = 6, 9.7%) compared to the TBLC-CBCT group (n = 1, 1.7%, p = 0.06). Grade 2 bleeding only occurred in the TBLC-F group (n = 4, 6.5%). A final MDD diagnosis was obtained in 89% (n = 57) of TBLC-F patients and 95% (n = 57) of TBLC-CBCT patients. CONCLUSIONS: TBLC-CBCT appears to be safer compared to TBLC-F with both approaches facilitating an MDD diagnosis. Further studies from multiple institutions randomizing patients to each modality are needed to confirm these findings.


Asunto(s)
Biopsia , Enfermedades Pulmonares Intersticiales , Humanos , Biopsia/efectos adversos , Biopsia/métodos , Tomografía Computarizada de Haz Cónico , Fluoroscopía , Pulmón/diagnóstico por imagen , Pulmón/patología , Enfermedades Pulmonares Intersticiales/diagnóstico , Estudios Retrospectivos
17.
Metab Brain Dis ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809384

RESUMEN

The present investigation delved into the pharmacological mechanisms underlying the management of depression through Flavan-3-ols and Aromatic Resins, employing in silico and in vivo methodologies. Network pharmacology was utilized to identify targets associated with the antidepressant activity of Flavan-3-ols and Aromatic Resins. Protein-protein interaction and KEGG analyses were conducted to enrich and explore key pathways. Molecular docking and simulation studies were executed to assess the targets. The antidepressant effects were studied using the Forced Swim Test and Tail Suspension Test on both unstressed mice and those subjected to the chronic unpredictable mild stress (CUMS) paradigm. The Compound-Target network analysis revealed a substantial impact of the components on numerous targets, with 332 nodes and 491 edges. Protein-protein interaction analysis indicated significant interactions with targets implicated in depression. KEGG analysis highlighted major pathways, including neuroactive ligand-receptor interaction, dopaminergic synapse, and long-term depression. Docking studies on EGCG demonstrated binding energies of -7.2 kcal/mol for serotonin 1 A (5-HT1A), -7.9 kcal/mol for D2, and - 9.6 kcal/mol for MOA-A. Molecular dynamics simulation indicated minute fluctuation, hence suggesting stable complexes formed between small molecules and proteins. The combination of Flavan-3-ols and Aromatic Resins significantly increased mobility time (p < 0.05) in the Forced Swim Test and Tail Suspension Test, while significantly decreasing immobility time and time freezing (p < 0.05) in both unstressed and CUMS mice. This study demonstrated the antidepressant characteristics of Flavan-3-ols and Aromatic Resins, underscoring the need for further research to develop a novel antidepressant medication.

18.
Acta Neurochir (Wien) ; 166(1): 121, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436794

RESUMEN

OBJECTIVE: Acute subdural hematoma (ASDH) stands as a significant contributor to morbidity after severe traumatic brain injuries (TBI). The primary treatment approach for patients experiencing progressive neurological deficits or notable mass effects is the surgical removal of the hematoma, which can be achieved through craniotomy (CO) or decompressive craniectomy (DC). Nevertheless, the choice between these two procedures remains a subject of ongoing debate and controversy. MATERIALS AND METHODS: We conducted a comprehensive literature review, utilizing prominent online databases and manually searching references related to craniotomy and craniectomy for subdural hematoma evacuation up to November 2023. Our analysis focused on outcome variables such as the presence of residual subdural hematoma, the need for revision procedures, and overall clinical outcomes. RESULTS: We included a total of 11 comparative studies in our analysis, encompassing 4269 patients, with 2979 undergoing craniotomy and 1290 undergoing craniectomy, meeting the inclusion criteria. Patients who underwent craniectomy displayed significantly lower scores on the Glasgow Coma Scale (GCS) during their initial presentation. Following surgery, the DC group exhibited a significantly reduced rate of residual subdural (P = 0.009). Additionally, the likelihood of a poor outcome during follow-up was lower in the CO group. Likewise, the mortality rate was lower in the CO group compared to the craniectomy group (OR 0.63, 95% CI 0.41-0.98, I2 = 84%, P = 0.04). CONCLUSION: Our study found that CO was associated with more favorable outcomes in terms of mortality, reoperation rate, and functional outcome while DC was associated with less likelihood of residual subdural hematoma. Upon further investigation of patient characteristics who underwent into either of these interventions, it was very clear that patients in DC cohort have more serious and low pre-op characteristics than the CO group. Nonetheless, brain herniation and advanced age act as independent factor for predicting the outcome irrespective of the intervention.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Craniectomía Descompresiva , Hematoma Subdural Agudo , Humanos , Hematoma Subdural Agudo/cirugía , Hematoma Subdural , Bases de Datos Factuales
19.
Artículo en Inglés | MEDLINE | ID: mdl-38581340

RESUMEN

Objectives: Continuous and excessive secretion of pro-inflammatory and anti-inflammatory chemicals and cytokines may further deteriorate inflammation. Anti-inflammatory drugs play an imperative role in inhibiting the evolution of inflammatory diseases. As per the Unani doctrine, a holistic treatment approach is used to treat illnesses. Therefore, drugs having different actions are used to achieve the synergic effect. Three drugs (Cinnamomum zeylanicum, Alpinia galanga, and Withania somnifera), which are frequently used in Unani medicine for joint disorders were selected to evaluate the anti-inflammatory activity of the extract derived from them. Methods: We used RAW 264.7 macrophage cells to see the expression of inflammatory markers IL-1ß, IL-6, and TNF-α. Cytotoxic activity was assessed with MTT assay and Nitric Oxide (NO) was evaluated using Griess reagent. Further, anti-inflammatory activity was evaluated in Wistar Albino rats using carrageenan-induced paw oedema and immunohistochemistry assays for Cyclooxygenase-2 (COX-2). All the data were analyzed using ANOVA and Dunnett t test for multiple comparisons. Results: This extract did not show any cytotoxic effect and the gene expression was significantly reduced for IL-1ß, IL-6, and TNF-α in a dose-dependent manner. Further, NO production was also significantly reduced in the test groups. Immunohistochemistry revealed that the test groups had less inflammation as compared to the control group. Conclusion: It may be inferred that the ethanolic extract of the three herbs has strong anti-inflammatory activity in the tested inflammatory models and the extract is safe as it did not show any cytotoxic effects in both in vitro and in vivo conditions.

20.
Chem Biodivers ; 21(4): e202301304, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37926683

RESUMEN

The widespread and indiscriminate use of broad-spectrum antibiotics leads to microbial resistance, which causes major problems in the treatment of infectious diseases. However, advances in nanotechnology using mushrooms have opened up new domains for the synthesis and use of nanoparticles against multidrug-resistant pathogens. Mushooms have recently attracted attention and are exploited for food and medicinal purposes. The current study focuses on the molecular identification, characterization of biologically synthesized silver nanoparticles by X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-Vis spectroscopy and scanning electron microscopy (SEM) and antibacterial analysis of extract and silver nanoparticles (AgNPs) synthesis from Ganoderma resinaceum against multidrug resistant microbes. Accurate identification of mushrooms is key in utilizing them for the benefit of humans. However, morphological identification of mushrooms is time consuming, tedious and may be prone to error. Molecular techniques are quick and reliable tools that are useful in mushroom taxonomy. Blast results showed that G. resinaceum (GU451247) obtained from Pakistan was 97 % same to the recognized G. resinaceum (GU451247) obtained from China as well as G. resinaceum (GU451247) obtained from India. The antimicrobial potential of mushroom composite and AgNPs showed high efficacy against pathogenic Staphylococcus aureus (ZOI 23 mm) K. pneumonia (ZOI 20 mm), Pseudomonas aeruginosa (ZOI 24 mm) and E. fecalis and A. baumannii (ZOI 10 mm), and multidrug resistant (MDR) A. baumannii (ZOI 24 mm). XRD evaluation revealed the crystalline composition of synthesized NPs with diameter of 45 nm. UV-Vis spectroscopy obsorption peaked of 589 nm confirmed the presence of AgNPs. SEM results showed the cubic morphology of AgNPs. The FTIR analysis of NPs obtained from G. resinaceum containing C=O as well as (O=C-H) stretching revealed presence of hydrogen, carbonyl and amide groups. The synthesized extract and AgNPs showed promising minimum inhibitory concentration (MIC) at 2 mg concentration against the MDR strains. AgNPs are observed to be efficient as they need less quantities to prevent bacterial growth. In the view of challenges for developing antimicrobial NPs of variable shape and size by various other methods, tuning nanoparticles synthesized via mushrooms can be a wonderful approach to resolve existing hurdles.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Humanos , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Antibacterianos/química , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA