Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Med Genet ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937076

RESUMEN

BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.

2.
Hum Genomics ; 17(1): 5, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740706

RESUMEN

BACKGROUND: Clinical exome sequencing (CES) provides a comprehensive and effective analysis of relevant disease-associated genes in a cost-effective manner compared to whole exome sequencing. Although several studies have focused on the diagnostic yield of CES, no study has assessed predictors of CES utility among patients with various Mendelian phenotypes. We assessed the effectiveness of CES as a first-level genetic test for molecular diagnosis in patients with a Mendelian phenotype and explored independent predictors of the clinical utility of CES. RESULTS: Between January 2016 and December 2019, 603 patients (426 probands and 177 siblings) underwent CES at the Department of Molecular Medicine of the University Hospital of Nancy. The median age of the probands was 34 years (IQR, 12-48), and the proportion of males was 46.9% (200/426). Adults and children represented 64.8% (276/426) and 35.2% (150/426), respectively. The median test-to-report time was 5.6 months (IQR, 4.1-7.2). CES revealed 203 pathogenic or likely pathogenic variants in 160 patients, corresponding to a diagnostic yield of 37.6% (160/426). Independent predictors of CES utility were criteria strongly suggestive of an extreme phenotype, including pediatric presentation and patient phenotypes associated with an increased risk of a priori probability of a monogenic disorder, the inclusion of at least one family member in addition to the proband, and a CES prescription performed by an expert in the field of rare genetic disorders. CONCLUSIONS: Based on a large dataset of consecutive patients with various Mendelian phenotypes referred for CES as a first-tier genetic test, we report a diagnostic yield of ~ 40% and several independent predictors of CES utility that might improve CES diagnostic efficiency.


Asunto(s)
Pruebas Genéticas , Hermanos , Masculino , Humanos , Secuenciación del Exoma , Pruebas Genéticas/métodos , Fenotipo , Derivación y Consulta
3.
Cell Rep Med ; 3(7): 100670, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35764087

RESUMEN

Inherited disorders of B12 metabolism produce a broad spectrum of manifestations, with limited knowledge of the influence of age and the function of related genes. We report a meta-analysis on 824 patients with a genetically proven diagnosis of an inherited disorder of vitamin B12 metabolism. Gene clusters and age categories are associated with patients' manifestations. The "cytoplasmic transport" cluster is associated with neurological and ophthalmological manifestations, the "mitochondrion" cluster with hypotonia, acute metabolic decompensation, and death, and the "B12 availability" and "remethylation" clusters with anemia and cytopenia. Hypotonia, EEG abnormalities, nystagmus, and strabismus are predominant in the younger patients, while neurological manifestations, such as walking difficulties, peripheral neuropathy, pyramidal syndrome, cerebral atrophy, psychiatric disorders, and thromboembolic manifestations, are predominant in the older patients. These results should prompt systematic checking of markers of vitamin B12 status, including homocysteine and methylmalonic acid, when usual causes of these manifestations are discarded in adult patients.


Asunto(s)
Deficiencia de Vitamina B 12 , Vitamina B 12 , Humanos , Ácido Metilmalónico , Hipotonía Muscular/complicaciones , Vitamina B 12/metabolismo , Deficiencia de Vitamina B 12/genética , Vitaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA