Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Genomics ; 20(1): 331, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31046664

RESUMEN

BACKGROUND: Both a source of diversity and the development of genomic tools, such as reference genomes and molecular markers, are equally important to enable faster progress in plant breeding. Pear (Pyrus spp.) lags far behind other fruit and nut crops in terms of employment of available genetic resources for new cultivar development. To address this gap, we designed a high-density, high-efficiency and robust single nucleotide polymorphism (SNP) array for pear, with the main objectives of conducting genetic diversity and genome-wide association studies. RESULTS: By applying a two-step design process, which consisted of the construction of a first 'draft' array for the screening of a small subset of samples, we were able to identify the most robust and informative SNPs to include in the Applied Biosystems™ Axiom™ Pear 70 K Genotyping Array, currently the densest SNP array for pear. Preliminary evaluation of this 70 K array in 1416 diverse pear accessions from the USDA National Clonal Germplasm Repository (NCGR) in Corvallis, OR identified 66,616 SNPs (93% of all the tiled SNPs) as high quality and polymorphic (PolyHighResolution). We further used the Axiom Pear 70 K Genotyping Array to construct high-density linkage maps in a bi-parental population, and to make a direct comparison with available genotyping-by-sequencing (GBS) data, which suggested that the SNP array is a more robust method of screening for SNPs than restriction enzyme reduced representation sequence-based genotyping. CONCLUSIONS: The Axiom Pear 70 K Genotyping Array, with its high efficiency in a widely diverse panel of Pyrus species and cultivars, represents a valuable resource for a multitude of molecular studies in pear. The characterization of the USDA-NCGR collection with this array will provide important information for pear geneticists and breeders, as well as for the optimization of conservation strategies for Pyrus.


Asunto(s)
Mapeo Cromosómico/métodos , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta , Polimorfismo de Nucleótido Simple , Pyrus/genética , Semillas/genética , Cromosomas de las Plantas , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje
2.
G3 (Bethesda) ; 14(5)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38526344

RESUMEN

Whitebark pine (WBP, Pinus albicaulis) is a white pine of subalpine regions in the Western contiguous United States and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola) and additional threats from mountain pine beetle (Dendroctonus ponderosae), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short reads of haploid megagametophyte tissue and Oxford Nanopore long reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gb of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gb). Approximately 87.2% (24.0 Gb) of total sequence was placed on the 12 WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the 3 subclasses of NLRs. Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo-assembled transcriptomes.


Asunto(s)
Genoma de Planta , Anotación de Secuencia Molecular , Pinus , Pinus/genética , Pinus/parasitología , Genómica/métodos , Especies en Peligro de Extinción , Secuenciación de Nucleótidos de Alto Rendimiento
3.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014212

RESUMEN

Whitebark pine (WBP, Pinus albicaulis ) is a white pine of subalpine regions in western contiguous US and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola ) and additional threats from mountain pine beetle ( Dendroctonus ponderosae ), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short-reads of haploid megametophyte tissue and Oxford Nanopore long-reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gbp of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gbp). Approximately 87.2% (24.0 Gbp) of total sequence was placed on the twelve WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich-repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the three subclasses of NLRs (TNL, CNL, RNL). Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo assembled transcriptomes.

4.
Front Plant Sci ; 13: 804145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237284

RESUMEN

Almond [Prunus dulcis (Mill.) D.A. Webb] is an economically important nut crop susceptible to the genetic disorder, Non-infectious Bud Failure (NBF). Despite the severity of exhibition in several prominent almond cultivars, no causal mechanism has been identified underlying NBF development. The disorder is hypothesized to be associated with differential DNA methylation patterns based on patterns of inheritance (i.e., via sexual reproduction and clonal propagation) and previous work profiling methylation in affected trees. Peach (Prunus persica L. Batsch) is a closely related species that readily hybridizes with almond; however, peach is not known to exhibit NBF. A cross between an NBF-exhibiting 'Carmel' cultivar and early flowering peach ('40A17') produced an F1 where ∼50% of progeny showed signs of NBF, including canopy die-back, erratic branching patterns (known as "crazy-top"), and rough bark. In this study, whole-genome DNA methylation profiles were generated for three F1 progenies exhibiting NBF and three progenies considered NBF-free. Subsequent alignment to both the almond and peach reference genomes showed an increase in genome-wide methylation levels in NBF hybrids in CG and CHG contexts compared to no-NBF hybrids when aligned to the almond genome but no difference in methylation levels when aligned to the peach genome. Significantly differentially methylated regions (DMRs) were identified by comparing methylation levels across the genome between NBF- and no-NBF hybrids in each methylation context. In total, 115,635 DMRs were identified based on alignment to the almond reference genome, and 126,800 DMRs were identified based on alignment to the peach reference genome. Nearby genes were identified as associated with the 39 most significant DMRs occurring either in the almond or peach alignments alone or occurring in both the almond and peach alignments. These DMR-associated genes include several uncharacterized proteins and transposable elements. Quantitative PCR was also performed to analyze the gene expression patterns of these identified gene targets to determine patterns of differential expression associated with differential DNA methylation. These DMR-associated genes, particularly those showing corresponding patterns of differential gene expression, represent key targets for almond breeding for future cultivars and mitigating the effects of NBF-exhibition in currently affected cultivars.

5.
G3 (Bethesda) ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100403

RESUMEN

Sequencing, assembly, and annotation of the 26.5 Gbp hexaploid genome of coast redwood (Sequoia sempervirens) was completed leading toward discovery of genes related to climate adaptation and investigation of the origin of the hexaploid genome. Deep-coverage short-read Illumina sequencing data from haploid tissue from a single seed were combined with long-read Oxford Nanopore Technologies sequencing data from diploid needle tissue to create an initial assembly, which was then scaffolded using proximity ligation data to produce a highly contiguous final assembly, SESE 2.1, with a scaffold N50 size of 44.9 Mbp. The assembly included several scaffolds that span entire chromosome arms, confirmed by the presence of telomere and centromere sequences on the ends of the scaffolds. The structural annotation produced 118,906 genes with 113 containing introns that exceed 500 Kbp in length and one reaching 2 Mb. Nearly 19 Gbp of the genome represented repetitive content with the vast majority characterized as long terminal repeats, with a 2.9:1 ratio of Copia to Gypsy elements that may aid in gene expression control. Comparison of coast redwood to other conifers revealed species-specific expansions for a plethora of abiotic and biotic stress response genes, including those involved in fungal disease resistance, detoxification, and physical injury/structural remodeling and others supporting flavonoid biosynthesis. Analysis of multiple genes that exist in triplicate in coast redwood but only once in its diploid relative, giant sequoia, supports a previous hypothesis that the hexaploidy is the result of autopolyploidy rather than any hybridizations with separate but closely related conifer species.


Asunto(s)
Sequoia , Evolución Biológica , Cromosomas , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Sequoia/genética
6.
PLoS One ; 15(4): e0231144, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32271818

RESUMEN

Walnut shell suture strength directly impacts the ability to maintain shell integrity during harvest and processing, susceptibility to insect damage and other contamination, and the proportion of kernel halves recovered during cracking. Suture strength is therefore an important breeding objective. Here, two methods of phenotyping this trait were investigated: 1) traditional, qualitative and rather subjective scoring on an interval scale by human observers, and; 2) quantitative and continuous measurements captured by a texturometer. The aim of this work was to increase the accuracy of suture strength phenotyping and to then apply two mapping approaches, quantitative trait loci (QTL) mapping and genome wide association (GWAS) models, in order to dissect the genetic basis of the walnut suture trait. Using data collected on trees within the UC Davis Walnut Improvement Program (n = 464), the genetic correlation between the texturometer method and qualitatively scored method was high (0.826). Narrow sense heritability calculated using quantitative measurements was 0.82. A major QTL for suture strength was detected on LG05, explaining 34% of the phenotypic variation; additionally, two minor QTLs were identified on LG01 and LG11. All three QTLs were confirmed with GWAS on corresponding chromosomes. The findings reported in this study are relevant for application towards a molecular breeding program in walnut.


Asunto(s)
Estudio de Asociación del Genoma Completo , Juglans/anatomía & histología , Juglans/genética , Sitios de Carácter Cuantitativo/genética , Análisis de Varianza , Estudios de Asociación Genética , Genotipo , Patrón de Herencia/genética , Desequilibrio de Ligamiento/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Carácter Cuantitativo Heredable , Programas Informáticos
7.
G3 (Bethesda) ; 10(12): 4411-4424, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33008832

RESUMEN

Walnut pellicle color is a key quality attribute that drives consumer preference and walnut sales. For the first time a high-throughput, computer vision-based phenotyping platform using a custom algorithm to quantitatively score each walnut pellicle in L* a* b* color space was deployed at large-scale. This was compared to traditional qualitative scoring by eye and was used to dissect the genetics of pellicle pigmentation. Progeny from both a bi-parental population of 168 trees ('Chandler' × 'Idaho') and a genome-wide association (GWAS) with 528 trees of the UC Davis Walnut Improvement Program were analyzed. Color phenotypes were found to have overlapping regions in the 'Chandler' genetic map on Chr01 suggesting complex genetic control. In the GWAS population, multiple, small effect QTL across Chr01, Chr07, Chr08, Chr09, Chr10, Chr12 and Chr13 were discovered. Marker trait associations were co-localized with QTL mapping on Chr01, Chr10, Chr14, and Chr16. Putative candidate genes controlling walnut pellicle pigmentation were postulated.


Asunto(s)
Juglans , Pigmentación , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Juglans/genética , Fenotipo , Pigmentación/genética
8.
Gigascience ; 9(5)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32432329

RESUMEN

BACKGROUND: The release of the first reference genome of walnut (Juglans regia L.) enabled many achievements in the characterization of walnut genetic and functional variation. However, it is highly fragmented, preventing the integration of genetic, transcriptomic, and proteomic information to fully elucidate walnut biological processes. FINDINGS: Here, we report the new chromosome-scale assembly of the walnut reference genome (Chandler v2.0) obtained by combining Oxford Nanopore long-read sequencing with chromosome conformation capture (Hi-C) technology. Relative to the previous reference genome, the new assembly features an 84.4-fold increase in N50 size, with the 16 chromosomal pseudomolecules assembled and representing 95% of its total length. Using full-length transcripts from single-molecule real-time sequencing, we predicted 37,554 gene models, with a mean gene length higher than the previous gene annotations. Most of the new protein-coding genes (90%) present both start and stop codons, which represents a significant improvement compared with Chandler v1.0 (only 48%). We then tested the potential impact of the new chromosome-level genome on different areas of walnut research. By studying the proteome changes occurring during male flower development, we observed that the virtual proteome obtained from Chandler v2.0 presents fewer artifacts than the previous reference genome, enabling the identification of a new potential pollen allergen in walnut. Also, the new chromosome-scale genome facilitates in-depth studies of intraspecies genetic diversity by revealing previously undetected autozygous regions in Chandler, likely resulting from inbreeding, and 195 genomic regions highly differentiated between Western and Eastern walnut cultivars. CONCLUSION: Overall, Chandler v2.0 will serve as a valuable resource to better understand and explore walnut biology.


Asunto(s)
Cromosomas de las Plantas , Biología Computacional/métodos , Genoma de Planta , Genómica/métodos , Juglans/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Juglans/metabolismo , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Proteómica/métodos , Especificidad de la Especie
9.
Int J Child Maltreat ; 1(1): 19-40, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31286112

RESUMEN

The purpose of this pilot cross-national study was to uncover similarities and differences in three areas that might affect the development of community-based programs targeting child maltreatment: behaviors considered to be maltreatment, perceived contributors to maltreatment, and whether the government or neighbors can do anything about maltreatment. Data were obtained from two neighborhood-based, cross-sectional surveys of adult caregivers of minors: one in Cleveland, USA, the other in Tel Aviv, Israel. The sample consisted of a total of 120 caregivers, in each city 20 residing in a low-SES neighborhood, 20 in a medium-SES neighborhood, and 20 in an elevated-SES neighborhood. Participants were asked (a) to provide three examples of behaviors they considered to be child abuse, (b) to rate the degree to which each of 13 factors contribute to child maltreatment, and (c) to rate the degree to which they agreed with a range of attitudes about maltreatment. The same coding scheme was used in both sites. Logistic regression analyses assessed city differences in dichotomous outcomes, while linear regression analyses assessed city differences in ratings of continuous outcomes. Analyses adjusted for individual and neighborhood characteristics, and accounted for residential clustering in neighborhoods. Primary results indicated that residence in Tel Aviv was associated with greater odds of citing emotional/psychological abuse compared to Cleveland residents. Also compared to Cleveland residents, Tel Aviv residents (a) viewed family structure, family values, religion, child-raising knowledge, and personal history of maltreatment as contributing less to maltreatment, (b) were less likely to agree that anyone could abuse a child or that spanking is necessary, and (c) had substantially greater odds of endorsing the government's ability to address child maltreatment. Concerning study implications, this investigation demonstrated the importance of context in shaping constructions of child maltreatment and the need for caution in replicating interventions without due consideration of potential differences in context, policy, and public opinion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA