Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecol Appl ; : e3008, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034303

RESUMEN

Wildfires and climate change increasingly are transforming vegetation composition and structure, and postfire management may have long-lasting effects on ecosystem reorganization. Postfire aerial seeding treatments are commonly used to reduce runoff and soil erosion, but little is known about how seeding treatments affect native vegetation recovery over long periods of time, particularly in type-converted forests that have been dramatically transformed by the effects of repeated, high-severity fire. In this study, we analyze and report on a rare long-term (23-year) dataset that documents vegetation dynamics following a 1996 post-fire aerial seeding treatment and a subsequent 2011 high-severity reburn in a dry conifer landscape of northern New Mexico, USA. Repeated surveys between 1997 and 2019 of 49 permanent transects were analyzed for differences in vegetation cover, richness, and diversity between seeded and unseeded areas, and to characterize the development of seeded and unseeded vegetation communities through time and across gradients of burn severity, elevation, and soil-available water capacity. Seeded plots showed no significant difference in bare ground cover during the initial years postfire relative to unseeded plots. Postfire seeding led to a clear and sustained divergence in herbaceous community composition. Seeded plots had a much higher cover of non-native graminoids, primarily Bromus inermis, a likely contaminant in the seed mix. High-severity reburning of all plots in 2011 reduced native graminoid cover by half at seeded plots compared with both prefire levels and with plots that were unseeded following the initial 1996 fire. In addition, higher fire severity was associated with increased non-native graminoid cover and reduced native graminoid cover. This study documents fire-driven ecosystem transformation from conifer forest into a shrub-and-grass-dominated system, reinforced by aerial seeding of grasses and high-severity reburning. This unique long-term dataset illustrates that post-fire seeding carries significant risks of unwanted non-native species invasions that persist through subsequent fires-thus alternative postfire management actions merit consideration to better support native ecosystem resilience given emergent climate change and increasing disturbance. This study also highlights the importance of long-term monitoring of postfire vegetation dynamics, as short-term assessments miss key elements of complex ecosystem responses to fire and postfire management actions.

2.
Glob Chang Biol ; 29(15): 4342-4353, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37211629

RESUMEN

The western United States is projected to experience more frequent and severe wildfires in the future due to drier and hotter climate conditions, exacerbating destructive wildfire impacts on forest ecosystems such as tree mortality and unsuccessful post-fire regeneration. While empirical studies have revealed strong relationships between topographical information and plant regeneration, ecological processes in ecosystem models have either not fully addressed topography-mediated effects on the probability of plant regeneration, or the probability is only controlled by climate-related factors, for example, water and light stresses. In this study, we incorporated seedling survival data based on a planting experiment in the footprint of the 2011 Las Conchas Fire into the Photosynthesis and EvapoTranspiration (PnET) extension of the LANDIS-II model by adding topographic and an additional climatic variable to the probability of regeneration. The modified algorithm included topographic parameters such as heat load index and ground slope and spring precipitation. We ran simulations on the Las Conchas Fire landscape for 2012-2099 using observed and projected climate data (i.e., Representative Concentration Pathway 4.5 and 8.5). Our modification significantly reduced the number of regeneration events of three common southwestern conifer tree species (piñon, ponderosa pine, and Douglas-fir), leading to decreases in aboveground biomass, regardless of climate scenario. The modified algorithm decreased regeneration at higher elevations and increased regeneration at lower elevations relative to the original algorithm. Regenerations of three species also decreased in eastern aspects. Our findings suggest that ecosystem models may overestimate post-fire regeneration events in the southwest United States. To better represent regeneration processes following wildfire, ecosystem models need refinement to better account for the range of factors that influence tree seedling establishment. This will improve model utility for projecting the combined effects of climate and wildfire on tree species distributions.


Asunto(s)
Incendios , Tracheophyta , Ecosistema , Bosques , Sudoeste de Estados Unidos
3.
Bioscience ; 73(11): 800-807, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516522

RESUMEN

Adaptive management is a powerful approach to management of social-ecological systems in circumstances with high uncertainty and high controllability. Cross-scale interactions increase uncertainty while managing. When undertaking adaptive management, although largely overlooked, it is important to account for spatial and temporal scales to mediate within- and cross-scale effects of management actions. This is particularly true when managing for multiple social and ecological goals. The iterative nature of an adaptive approach has the capacity to accommodate tradeoffs among different stakeholder priorities and multiple ecosystem attributes within and across scales. In this paper, we introduce multi-scale adaptive management of social-ecological systems and demonstrate the importance of this approach with case studies of the Great Plains of North America and the Platte River Basin in the United States. Adaptive management combined with a focus on scale and cross-scale interactions using the panarchy model of social-ecological systems can help to improve management outcomes.

4.
Ecol Appl ; 33(2): e2761, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36218183

RESUMEN

Some introduced species cause severe damage, although the majority have little impact. Robust predictions of which species are most likely to cause substantial impacts could focus efforts to mitigate those impacts or prevent certain invasions entirely. Introduced herbivorous insects can reduce crop yield, fundamentally alter natural and managed forest ecosystems, and are unique among invasive species in that they require certain host plants to succeed. Recent studies have demonstrated that understanding the evolutionary history of introduced herbivores and their host plants can provide robust predictions of impact. Specifically, divergence times between hosts in the native and introduced ranges of a nonnative insect can be used to predict the potential impact of the insect should it establish in a novel ecosystem. However, divergence time estimates vary among published phylogenetic datasets, making it crucial to understand if and how the choice of phylogeny affects prediction of impact. Here, we tested the robustness of impact prediction to variation in host phylogeny by using insects that feed on conifers and predicting the likelihood of high impact using four different published phylogenies. Our analyses ranked 62 insects that are not established in North America and 47 North American conifer species according to overall risk and vulnerability, respectively. We found that results were robust to the choice of phylogeny. Although published vascular plant phylogenies continue to be refined, our analysis indicates that those differences are not substantial enough to alter the predictions of invader impact. Our results can assist in focusing biosecurity programs for conifer pests and can be more generally applied to nonnative insects and their potential hosts by prioritizing surveillance for those insects most likely to be damaging invaders.


Asunto(s)
Ecosistema , Tracheophyta , Animales , Filogenia , Insectos , Plantas , Especies Introducidas
5.
Ergonomics ; : 1-16, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037325

RESUMEN

We aimed to infer the effectiveness of officers' training and experience by assessing consistency of behavioural responses between them. If officers facing the same scenario respond in similar ways, this implies their use of shared cognition, through acquired in-common tactical knowledge. Officers (n = 42) responded to a live-acted scenario in which an assailant ultimately discharged his weapon. Triangulated camera positions assessed their movement patterns, final positions, and weapon responses relative to when the assailant fired his weapon. We also assessed the officers' visual search and gathered information regarding their experience and rest. Our second aim was to examine sources of variability in the officers' responses. We found extensive variability in all aspects of the response. Experience did not impact spatial or temporal behavioural responses. However, longer hours awake and lower reported rest negatively impacted officers' responses. We conclude that officers had insufficient training and experience to demonstrate in-common knowledge.Practitioner summary: Police officers showed high spatial and temporal variability in response to the same scenario. This implies inadequate tactical training, and is supported by our finding that training and experience did not impact performance. Instead, the officers' variability was constrained by their visual search, and the hours awake before being tested.

6.
Glob Chang Biol ; 28(7): 2202-2220, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34953175

RESUMEN

Drylands cover more than 40% of Earth's land surface and occur at the margin of forest distributions due to the limited availability of water for tree growth. Recent elevated temperature and low precipitation have driven greater forest declines and pulses of tree mortality on dryland sites compared to humid sites, particularly in temperate Eurasia and North America. Afforestation of dryland areas has been widely implemented and is expected to increase in many drylands globally to enhance carbon sequestration and benefits to the human environment, but the interplay of sometimes conflicting afforestation outcomes has not been formally evaluated yet. Most previous studies point to conflicts between additional forest area and water consumption, in particular water yield and soil conservation/desalinization in drylands, but were generally confined to local and regional scales. Our global synthesis demonstrates that additional tree cover can amplify water consumption through a nonlinear increase in evapotranspiration-depending on tree species, age, and structure-which will be further intensified by future climate change. In this review we identify substantial knowledge gaps in addressing the dryland afforestation dilemma, where there are trade-offs with planted forests between increased availability of some resources and benefits to human habitats versus the depletion of other resources that are required for sustainable development of drylands. Here we propose a method of addressing comprehensive vegetation carrying capacity, based on regulating the distribution and structure of forest plantations to better deal with these trade-offs in forest multifunctionality. We also recommend new priority research topics for dryland afforestation, including: responses and feedbacks of dryland forests to climate change; shifts in the ratio of ecosystem ET to tree cover; assessing the role of scale of afforestation in influencing the trade-offs of dryland afforestation; and comprehensive modeling of the multifunctionality of dryland forests, including both ecophysiological and socioeconomic aspects, under a changing climate.


Asunto(s)
Ecosistema , Bosques , Cambio Climático , Humanos , Árboles , Agua
7.
Glob Chang Biol ; 28(1): 245-266, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34653296

RESUMEN

Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.


Asunto(s)
Cambio Climático , Bosques , Biomasa , Clima , Temperatura
8.
Proc Natl Acad Sci U S A ; 116(40): 19899-19904, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527247

RESUMEN

Over the past several decades, environmental governance has made substantial progress in addressing environmental change, but emerging environmental problems require new innovations in law, policy, and governance. While expansive legal reform is unlikely to occur soon, there is untapped potential in existing laws to address environmental change, both by leveraging adaptive and transformative capacities within the law itself to enhance social-ecological resilience and by using those laws to allow social-ecological systems to adapt and transform. Legal and policy research to date has largely overlooked this potential, even though it offers a more expedient approach to addressing environmental change than waiting for full-scale environmental law reform. We highlight examples from the United States and the European Union of untapped capacity in existing laws for fostering resilience in social-ecological systems. We show that governments and other governance agents can make substantial advances in addressing environmental change in the short term-without major legal reform-by exploiting those untapped capacities, and we offer principles and strategies to guide such initiatives.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Política Ambiental , Biodiversidad , Ecología , Unión Europea , Gobierno , Medio Social , Estados Unidos
9.
New Phytol ; 229(2): 831-844, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32918833

RESUMEN

Conifer mortality rates are increasing in western North America, but the physiological mechanisms underlying this trend are not well understood. We examined tree-ring-based radial growth along with stable carbon (C) and oxygen (O) isotope composition (δ13 C and δ18 O, respectively) of dying and surviving conifers at eight old-growth forest sites across a strong moisture gradient in the western USA to retrospectively investigate mortality predispositions. Compared with surviving trees, lower growth of dying trees was detected at least one decade before mortality at seven of the eight sites. Intrinsic water-use efficiency increased over time in both dying and surviving trees, with a weaker increase in dying trees at five of the eight sites. C starvation was a strong correlate of conifer mortality based on a conceptual model incorporating growth, δ13 C, and δ18 O. However, this approach does not capture processes that occur in the final months of survival. Ultimately, C starvation may lead to increased mortality vulnerability, but hydraulic failure or biotic attack may dominate the process during the end stages of mortality in these conifers.


Asunto(s)
Tracheophyta , Isótopos de Carbono/análisis , Sequías , América del Norte , Estudios Retrospectivos , Árboles , Agua
10.
Mol Psychiatry ; 25(8): 1759-1776, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-30283033

RESUMEN

Cocaine-induced vasoconstriction reduces blood flow, which can jeopardize neuronal function and in the prefrontal cortex (PFC) it may contribute to compulsive cocaine intake. Here, we used integrated optical imaging in a rat self-administration and a mouse noncontingent model, to investigate whether changes in the cerebrovascular system in the PFC contribute to cocaine self-administration, and whether they recover with detoxification. In both animal models, cocaine induced severe vasoconstriction and marked reductions in cerebral blood flow (CBF) in the PFC, which were exacerbated with chronic exposure and with escalation of cocaine intake. Though there was a significant proliferation of blood vessels in areas of vasoconstriction (angiogenesis), CBF remained reduced even after 1 month of detoxification. Treatment with Nifedipine (Ca2+ antagonist and vasodilator) prevented cocaine-induced CBF decreases and neuronal Ca2+ changes in the PFC, and decreased cocaine intake and blocked reinstatement of drug seeking. These findings provide support for the hypothesis that cocaine-induced CBF reductions lead to neuronal deficits that contribute to hypofrontality and to compulsive-like cocaine intake in addiction, and document that these deficits persist at least one month after detoxification. Our preliminary data showed that nifedipine might be beneficial in preventing cocaine-induced vascular toxicity and in reducing cocaine intake and preventing relapse.


Asunto(s)
Trastornos Relacionados con Cocaína/etiología , Cocaína/administración & dosificación , Cocaína/farmacología , Isquemia/inducido químicamente , Animales , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Masculino , Ratones , Nifedipino/farmacología , Corteza Prefrontal/irrigación sanguínea , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Wistar , Autoadministración
11.
Ecol Soc ; 26(4): 1-9, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35116065

RESUMEN

Managing social-ecological systems toward desirable regimes requires learning about the system being managed while preparing for many possible futures. Adaptive management (AM) and scenario planning (SP) are two systems management approaches that separately use learning to reduce uncertainties and employ planning to manage irreducible uncertainties, respectively. However, each of these approaches have limitations that confound management of social-ecological systems. Here, we introduce iterative scenarios (IS), a systems management approach that is a hybrid of the scopes and relationships to uncertainty and controllability of AM and SP that combines the "iterativeness" of AM and futures planning of SP. Iterative scenarios is appropriate for situations with high uncertainty about whether a management action will lead to intended outcomes, the desired benefits are numerous and cross-scale, and it is difficult to account for the social implications around the natural resource management options. The value of iterative scenarios is demonstrated by applying the approach to green infrastructure futures for a neighborhood in the city of Cleveland, Ohio, U.S., that had experienced long-term, systemic disinvestment. The Cleveland green infrastructure project was particularly well suited to the IS approach given that learning about environmental factors was necessary and achievable, but what would be socially desirable and possible was unknown. However, iterative scenarios is appropriate for many social-ecological systems where uncertainty is high as IS accommodates real-world complexity faced by management.

12.
Ecol Soc ; 26(4): 1-7, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34804170

RESUMEN

A key challenge of the Anthropocene is to confront the dynamic complexity of systems of people and nature to guide robust interventions and adaptations across spatiotemporal scales. Panarchy, a concept rooted in resilience theory, accounts for this complexity, having at its core multiscale organization, interconnectedness of scales, and dynamic system structure at each scale. Despite the increasing use of panarchy in sustainability research, quantitative tests of its premises are scarce, particularly as they pertain to management consequences in ecosystems. In this study we compared the physicochemical environment of managed (limed) and minimally disturbed reference lakes and used time series modeling and correlation analyses to test the premises of panarchy theory: (1) that both lake types show dynamic structure at multiple temporal scales, (2) that this structure differs between lake types due to liming interacting with the natural disturbance regime of lakes, and (3) that liming manifests across temporal scales due to cross-scale connectivity. Hypotheses 1 and 3 were verified whereas support for hypothesis 2 was ambiguous. The literature suggests that liming is a "command-and-control" management form that fails to foster self-organization manifested in lakes returning to pre-liming conditions once management is ceased. In this context, our results suggest that redundance of liming footprints across scales, a feature contributing to resilience, in the physicochemical environment alone may not be enough to create a self-organizing limed lake regime. Further research studying the broader biophysical lake environment, including ecological communities of pelagic and benthic habitats, will contribute to a better understanding of managed lake panarchies. Such insight may further our knowledge of ecosystem management in general and of limed lakes in particular.

13.
J Environ Manage ; 291: 112550, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33965707

RESUMEN

A key pursuit in contemporary ecology is to differentiate regime shifts that are truly irreversible from those that are hysteretic. Many ecological regime shifts have been labeled as irreversible without exploring the full range of variability in stabilizing feedbacks that have the potential to drive an ecological regime shift back towards a desirable ecological regime. Removing fire from grasslands can drive a regime shift to juniper woodlands that cannot be reversed using typical fire frequency and intensity thresholds, and has thus been considered irreversible. This study uses a unique, long-term experimental fire landscape co-dominated by grassland and closed-canopy juniper woodland to determine whether extreme fire can shift a juniper woodland regime back to grassland dominance using aboveground herbaceous biomass as an indicator of regime identity. We use a space-for-time substitute to quantify herbaceous biomass following extreme fire in juniper woodland up to 15 years post-fire and compare these with (i) 15 years of adjacent grassland recovery post-fire, (ii) unburned closed-canopy juniper woodland reference sites and (iii) unburned grassland reference sites. Our results show grassland dominance rapidly emerges following fires that operate above typical fire intensity thresholds, indicating that grassland-juniper woodlands regimes are hysteretic rather than irreversible. One year following fire, total herbaceous biomass in burned juniper stands was comparable to grasslands sites, having increased from 5 ± 3 g m-2 to 142 ± 42 g m-2 (+2785 ± 812 percent). Herbaceous dominance in juniper stands continued to persist 15-years after initial treatment, reaching a maximum of 337 ± 42 g m-2 eight years post-fire. In juniper encroached grasslands, fires that operate above typical fire intensity thresholds can provide an effective method to reverse juniper woodland regime shifts. This has major implications for regions where juniper encroachment threatens rancher-based economies and grassland biodiversity and provides an example of how to operationalize resilience theory to disentangle irreversible thresholds from hysteretic system behavior.


Asunto(s)
Ecosistema , Incendios , Biodiversidad , Biomasa , Bosques , Pradera
14.
Front Ecol Environ ; 18(10): 576-583, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408590

RESUMEN

Addressing unexpected events and uncertainty represents one of the grand challenges of the Anthropocene, yet ecosystem management is constrained by existing policy and laws that were not formulated to deal with today's accelerating rates of environmental change. In many cases, managing for simple regulatory standards has resulted in adverse outcomes, necessitating innovative approaches for dealing with complex social-ecological problems. We highlight a project in the US Great Plains where panarchy - a conceptual framework that emerged from resilience - was implemented at project onset to address the continued inability to halt large-scale transition from grass-to-tree dominance in central North America. We review how panarchy was applied, the initial outcomes and evidence for policy reform, and the opportunities and challenges for which it could serve as a useful model to contrast with traditional ecosystem management approaches.

15.
Ecol Soc ; 25(1): 1-4, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32523609

RESUMEN

Management frequently creates system conditions that poorly mimic the conditions of a desirable self-organizing regime. Such management is ubiquitous across complex systems of people and nature and will likely intensify as these systems face rapid change. However, it is highly uncertain whether the costs (unintended consequences, including negative side effects) of management but also social dynamics can eventually outweigh benefits in the long term. We introduce the term "coerced regime" to conceptualize this management form and tie it into resilience theory. The concept encompasses proactive and reactive management to maintain desirable and mitigate undesirable regime conditions, respectively. A coerced regime can be quantified through a measure of the amount of management required to artificially maintain its desirable conditions. Coerced regimes comprise "ghosts" of self-sustaining desirable system regimes but ultimately become "dead regimes walking" when these regimes collapse as soon as management is discontinued. We demonstrate the broad application of coerced regimes using distinct complex systems of humans and nature (human subjects, aquatic and terrestrial environments, agriculture, and global climate). We discuss commonalities and differences between these examples to identify tradeoffs between benefits and harms of management. The concept of coerced regimes can spur thinking and inform management about the duality of what we know and can envision versus what we do not know and therefore cannot envision-a pervasive sustainability conundrum as planet Earth swiftly moves towards a future without historical analogue.

16.
Neuroimage ; 188: 188-197, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513396

RESUMEN

Cocaine is a highly addictive drug with complex pharmacological effects. Most preclinical imaging studies investigating the effects of cocaine in the brain have been performed under anesthesia, which confounds findings. To tackle this problem, we used optical imaging to compare the effects of cocaine in the awake versus the anesthetized states. For this purpose, we customized an air floating mobile cage to fit the multi-wavelength spectral and laser speckle optical imaging system and implanted a multi-layer cranial window over the mouse somatosensory cortex. Results showed significant differences in neuronal activity and hemodynamics at baseline and in response to cocaine between the awake and the anesthetized states (isoflurane anesthesia). Specifically, 1) at baseline isoflurane dilated cerebral vessels, increased cerebral blood flow and depressed neuronal Ca2+ activity compared to the awake state; 2) acute cocaine (1 mg/kg iv) vasoconstricted blood vessels (arteries and veins) and decreased cerebral blood flow and oxygenated hemoglobin in the anesthetized state but not in the awake condition; 3) cocaine increased the accumulation of mean intracellular Ca2+ in neurons in the anesthetized state but not in the awake condition; and 4) in the awake state acute cocaine increased neuronal activities (increased the frequency of Ca2+ transients) and increased neuronal synchronization. We also corroborated that in the awake state cocaine also disrupted neurovascular coupling. These findings indicate that both vascular and neuronal responses to cocaine are influenced by isoflurane anesthesia, which highlights the importance of imaging awake animals when studying the effects of cocaine or other drugs in the brain.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Hemodinámica/efectos de los fármacos , Modelos Animales , Corteza Somatosensorial/efectos de los fármacos , Anestésicos por Inhalación/farmacología , Animales , Circulación Cerebrovascular/efectos de los fármacos , Femenino , Isoflurano/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Acoplamiento Neurovascular/efectos de los fármacos , Imagen Óptica/métodos , Corteza Somatosensorial/fisiología , Vigilia/efectos de los fármacos
17.
Addict Biol ; 24(3): 485-497, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29504647

RESUMEN

Cocaine addiction is associated with dysfunction of the prefrontal cortex (PFC), which facilitates relapse and compulsive drug taking. To assess if cocaine's effects on both neuronal and vascular activity contribute to PFC dysfunction, we used optical coherence tomography and multi-wavelength laser speckle to measure vascularization and hemodynamics and used GCaMP6f to monitor intracellular Ca2+ levels ([Ca2+ ]in ) as a marker of neuronal activity. Rats were given short (1 hour; ShA) or long (6 hours; LgA) access cocaine self-administration. As expected, LgA but not ShA rats escalated cocaine intake. In naïve rats, acute cocaine decreased oxygenated hemoglobin, increased deoxygenated hemoglobin and reduced cerebral blood flow in PFC, likely due to cocaine-induced vasoconstriction. ShA rats showed enhanced hemodynamic response and slower recovery after cocaine, versus naïve. LgA rats showed a blunted hemodynamic response, but an enhanced PFC neuronal [Ca2+ ]in increase after cocaine challenge associated with drug intake. Both ShA and LgA groups had higher vessel density, indicative of angiogenesis, presumably to compensate for cocaine's vasoconstricting effects. Cocaine self-administration modified the PFC cerebrovascular responses enhancing it in ShA and attenuating it in LgA animals. In contrast, LgA but not ShA animals showed sensitized neuronal reactivity to acute cocaine in the PFC. The opposite changes in hemodynamics (decreased) and neuronal responses (enhanced) in LgA rats indicate that these constitute distinct effects and suggest that the neuronal and not the vascular effects are associated with escalation of cocaine intake in addiction whereas its vascular effect in PFC might contribute to cognitive deficits that increase vulnerability to relapse.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Hemodinámica/efectos de los fármacos , Neuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Anestésicos por Inhalación , Animales , Circulación Cerebrovascular/efectos de los fármacos , Condicionamiento Operante , Hemoglobinas/metabolismo , Isoflurano , Masculino , Neuroimagen/métodos , Corteza Prefrontal/irrigación sanguínea , Ratas Sprague-Dawley , Autoadministración , Tomografía de Coherencia Óptica , Vasoconstricción/efectos de los fármacos
18.
J Environ Manage ; 240: 368-373, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30953990

RESUMEN

Mechanisms underlying the loss of ecological resilience and a shift to an alternate regime with lower ecosystem service provisioning continues to be a leading debate in ecology, particularly in cases where evidence points to human actions and decision-making as the primary drivers of resilience loss and regime change. In this paper, we introduce the concept of coerced resilience as a way to explore the interplay among social power, ecological resilience, and fire management, and to better understand the unintended and undesired regime changes that often surprise ecosystem managers and governing officials. Philosophically, coercion is the opposite of freedom, and uses influence or force to gain compliance among local actors. The coercive force imposed by societal laws and policies can either enhance or reduce the potential to manage for essential structures and functions of ecological systems and, therefore, can greatly alter resilience. Using a classical fire-dependent regime shift from North America (tallgrass prairie to juniper woodland), and given that coercion is widespread in fire management today, we quantify relative differences in resilience that emerge in a policy-coerced fire system compared to a theoretical, policy-free fire system. Social coercion caused large departures in the fire conditions associated with alternative grassland and juniper woodland states, and the potential for a grassland state to emerge to dominance became increasingly untenable with fire as juniper cover increased. In contrast, both a treeless, grassland regime and a co-dominated grass-tree regime emerged across a wide range of fire conditions in the absence of policy controls. The severe coercive forcing present in fire management in the Great Plains, and corresponding erosion of grassland resilience, points to the need for transformative environmental governance and the rethinking of social power structures in modern fire policies.


Asunto(s)
Ecosistema , Incendios , Ecología , Bosques , Humanos , América del Norte
19.
New Phytol ; 218(1): 15-28, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29488280

RESUMEN

Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die-off events have severe consequences for ecosystem services, biophysical and biogeochemical land-atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die-off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought-induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.


Asunto(s)
Sequías , Bosques , Árboles/fisiología , Predicción , Geografía , Modelos Teóricos , Probabilidad
20.
New Phytol ; 219(3): 851-869, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29451313

RESUMEN

Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.


Asunto(s)
Bosques , Humedad , Árboles/fisiología , Clima Tropical , Dióxido de Carbono/metabolismo , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA