Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(49): e2309884120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38039271

RESUMEN

Enhancing protein thermal stability is important for biomedical and industrial applications as well as in the research laboratory. Here, we describe a simple machine-learning method which identifies amino acid substitutions that contribute to thermal stability based on comparison of the amino acid sequences of homologous proteins derived from bacteria that grow at different temperatures. A key feature of the method is that it compares the sequences based not simply on the amino acid identity, but rather on the structural and physicochemical properties of the side chain. The method accurately identified stabilizing substitutions in three well-studied systems and was validated prospectively by experimentally testing predicted stabilizing substitutions in a polyamine oxidase. In each case, the method outperformed the widely used bioinformatic consensus approach. The method can also provide insight into fundamental aspects of protein structure, for example, by identifying how many sequence positions in a given protein are relevant to temperature adaptation.


Asunto(s)
Aprendizaje Automático , Proteínas , Estabilidad Proteica , Secuencia de Aminoácidos , Mutación , Proteínas/genética , Estabilidad de Enzimas
2.
Biochemistry ; 63(1): 141-151, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38110367

RESUMEN

The Campylobacter genus of Gram-negative bacteria is characterized by the expression of N-linked protein glycosylation (pgl) pathways. As Campylobacter concisus is an emerging human pathogen, a better understanding of the variation of the biosynthetic pathways across the genus is necessary to identify the relationships between protein glycosylation and disease. The pgl pathways of C. concisus strains have been reported to diverge from other Campylobacter in steps after the biosynthesis of N-acetylgalactosamine-α1,3-N,N'-diacetylbacillosamine-α-1-diphosphate undecaprenyl (GalNAc-diNAcBac-PP-Und), which is catalyzed by PglC and PglA, a phosphoglycosyltransferase (PGT) and a glycosyltransferase (GT), respectively. Here we characterize the PglJ GTs from two strains of C. concisus. Chemical synthesis was employed to access the stereochemically defined glycan donor substrates, uridine diphosphate N-acetyl-d-galactosaminuronic acid (UDP-GalNAcA) and uridine diphosphate N-acetyl-d-glucosaminuronic acid (UDP-GlcNAcA), to allow biochemical investigation of PglJ. Evidence for the PglJ substrate specificity structural determinants for the C6″ carboxylate-containing sugar was obtained through variant-based biochemical assays. Additionally, characterization of a UDP-sugar dehydrogenase encoded in the pgl operon, which is similar to the Pseudomonas aeruginosa WbpO responsible for the oxidization of a UDP-HexNAc to UDP-HexNAcA, supports the availability of a UDP-HexNAcA substrate for a GT that incorporates the modified sugar and provides evidence for the presence of a HexNAcA in the N-linked glycan. Utilizing sequence similarity network (SSN) analysis, we identified conserved sequence motifs among PglJ glycosyltransferases, shedding light on substrate preferences and offering predictive insights into enzyme functions across the Campylobacter genus. These studies now allow detailed characterization of the later steps in the pgl pathway in C. concisus strains and provide insights into enzyme substrate specificity determinants for glycan assembly enzymes.


Asunto(s)
Campylobacter , Glicosiltransferasas , Humanos , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Glicosilación , Polisacáridos , Campylobacter/genética , Campylobacter/metabolismo , Uridina Difosfato/metabolismo , Azúcares
3.
J Biol Chem ; 299(10): 105194, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633332

RESUMEN

Complex glycans serve essential functions in all living systems. Many of these intricate and byzantine biomolecules are assembled employing biosynthetic pathways wherein the constituent enzymes are membrane-associated. A signature feature of the stepwise assembly processes is the essentiality of unusual linear long-chain polyprenol phosphate-linked substrates of specific isoprene unit geometry, such as undecaprenol phosphate (UndP) in bacteria. How these enzymes and substrates interact within a lipid bilayer needs further investigation. Here, we focus on a small enzyme, PglC from Campylobacter, structurally characterized for the first time in 2018 as a detergent-solubilized construct. PglC is a monotopic phosphoglycosyl transferase that embodies the functional core structure of the entire enzyme superfamily and catalyzes the first membrane-committed step in a glycoprotein assembly pathway. The size of the enzyme is significant as it enables high-level computation and relatively facile, for a membrane protein, experimental analysis. Our ensemble computational and experimental results provided a high-level view of the membrane-embedded PglC/UndP complex. The findings suggested that it is advantageous for the polyprenol phosphate to adopt a conformation in the same leaflet where the monotopic membrane protein resides as opposed to additionally disrupting the opposing leaflet of the bilayer. Further, the analysis showed that electrostatic steering acts as a major driving force contributing to the recognition and binding of both UndP and the soluble nucleotide sugar substrate. Iterative computational and experimental mutagenesis support a specific interaction of UndP with phosphoglycosyl transferase cationic residues and suggest a role for critical conformational transitions in substrate binding and specificity.


Asunto(s)
Membrana Celular , Poliprenoles , Transferasas , Ligandos , Proteínas de la Membrana , Fosfatos , Poliprenoles/metabolismo , Transferasas/química , Fosfatos de Poliisoprenilo/química , Membrana Celular/química , Bacterias/química , Bacterias/citología
4.
J Biol Chem ; 299(12): 105396, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890781

RESUMEN

Scaffold proteins help mediate interactions between protein partners, often to optimize intracellular signaling. Herein, we use comparative, biochemical, biophysical, molecular, and cellular approaches to investigate how the scaffold protein NEMO contributes to signaling in the NF-κB pathway. Comparison of NEMO and the related protein optineurin from a variety of evolutionarily distant organisms revealed that a central region of NEMO, called the Intervening Domain (IVD), is conserved between NEMO and optineurin. Previous studies have shown that this central core region of the IVD is required for cytokine-induced activation of IκB kinase (IKK). We show that the analogous region of optineurin can functionally replace the core region of the NEMO IVD. We also show that an intact IVD is required for the formation of disulfide-bonded dimers of NEMO. Moreover, inactivating mutations in this core region abrogate the ability of NEMO to form ubiquitin-induced liquid-liquid phase separation droplets in vitro and signal-induced puncta in vivo. Thermal and chemical denaturation studies of truncated NEMO variants indicate that the IVD, while not intrinsically destabilizing, can reduce the stability of surrounding regions of NEMO due to the conflicting structural demands imparted on this region by flanking upstream and downstream domains. This conformational strain in the IVD mediates allosteric communication between the N- and C-terminal regions of NEMO. Overall, these results support a model in which the IVD of NEMO participates in signal-induced activation of the IKK/NF-κB pathway by acting as a mediator of conformational changes in NEMO.


Asunto(s)
Quinasa I-kappa B , Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Separación de Fases , Transducción de Señal , Ubiquitina/metabolismo , Humanos
5.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33472976

RESUMEN

The monotopic phosphoglycosyl transferase (monoPGT) superfamily comprises over 38,000 nonredundant sequences represented in bacterial and archaeal domains of life. Members of the superfamily catalyze the first membrane-committed step in en bloc oligosaccharide biosynthetic pathways, transferring a phosphosugar from a soluble nucleoside diphosphosugar to a membrane-resident polyprenol phosphate. The singularity of the monoPGT fold and its employment in the pivotal first membrane-committed step allows confident assignment of both protein and corresponding pathway. The diversity of the family is revealed by the generation and analysis of a sequence similarity network for the superfamily, with fusion of monoPGTs with other pathway members being the most frequent and extensive elaboration. Three common fusions were identified: sugar-modifying enzymes, glycosyl transferases, and regulatory domains. Additionally, unexpected fusions of the monoPGT with members of the polytopic PGT superfamily were discovered, implying a possible evolutionary link through the shared polyprenol phosphate substrate. Notably, a phylogenetic reconstruction of the monoPGT superfamily shows a radial burst of functionalization, with a minority of members comprising only the minimal PGT catalytic domain. The commonality and identity of the fusion partners in the monoPGT superfamily is consistent with advantageous colocalization of pathway members at membrane interfaces.


Asunto(s)
Proteínas Bacterianas/química , Glicoconjugados/química , Glicosiltransferasas/química , Bacterias Gramnegativas/enzimología , Bacterias Grampositivas/enzimología , Polisacáridos/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Citoplasma/enzimología , Citoplasma/genética , Evolución Molecular , Expresión Génica , Redes Reguladoras de Genes , Glicoconjugados/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/genética , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/genética , Redes y Vías Metabólicas/genética , Modelos Moleculares , Periplasma/enzimología , Periplasma/genética , Filogenia , Polisacáridos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
6.
Trends Biochem Sci ; 44(1): 7-20, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30337134

RESUMEN

Monotopic membrane proteins, classified by topology, are proteins that embed into a single face of the membrane. These proteins are generally underrepresented in the Protein Data Bank (PDB), but the past decade of research has revealed new examples that allow the description of generalizable features. This Opinion article summarizes shared characteristics including oligomerization states, modes of membrane association, mechanisms of interaction with hydrophobic or amphiphilic substrates, and homology to soluble folds. We also discuss how associations of monotopic enzymes in pathways can be used to promote substrate specificity and product composition. These examples highlight the challenges in structure determination specific to this class of proteins, but also the promise of new understanding from future study of these proteins that reside at the interface.


Asunto(s)
Proteínas de la Membrana/química , Animales , Bases de Datos de Proteínas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
7.
Biochemistry ; 62(3): 851-862, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36662673

RESUMEN

Monoamine oxidases (MAOs) play a key role in the breakdown of primary and secondary amines. In eukaryotic organisms, these enzymes are vital to the regulation of monoamine neurotransmitters and the degradation of dietary monoamines. MAOs have also been identified in prokaryotic species, although their role in these organisms is not well understood. Here, we report the biophysical and structural properties of a promiscuous, bacterial MAO from Corynebacterium ammoniagenes (caMAO). caMAO catalyzes the oxidation of a number of monoamine substrates including dopamine and norepinephrine, as well as exhibiting some activity with polyamine substrates such as cadaverine. The X-ray crystal structures of Michaelis complexes with seven substrates show that conserved hydrophobic interactions and hydrogen-bonding pattern (for polar substrates) allow the broad specificity range. The structure of caMAO identifies an unusual cysteine (Cys424) residue in the so-called "aromatic cage", which flanks the flavin isoalloxazine ring in the active site. Site-directed mutagenesis, steady-state kinetics in air-saturated buffer, and UV-vis spectroscopy revealed that Cys424 plays a role in the pH dependence and modulation of electrostatics within the caMAO active site. Notably, bioinformatic analysis shows a propensity for variation at this site within the "aromatic cage" of the flavin amine oxidase (FAO) superfamily. Structural analysis also identified the conservation of a secondary substrate inhibition site, present in a homologous member of the superfamily. Finally, genome neighborhood diagram analysis of caMAO in the context of the FAO superfamily allows us to propose potential roles for these bacterial MAOs in monoamine and polyamine degradation and catabolic pathways related to scavenging of nitrogen.


Asunto(s)
Flavinas , Monoaminooxidasa , Monoaminooxidasa/química , Dominio Catalítico , Mutagénesis Sitio-Dirigida , Flavinas/metabolismo , Poliaminas , Especificidad por Sustrato
8.
Biochemistry ; 61(17): 1853-1861, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35994320

RESUMEN

Trichomonas vaginalis is the causative parasitic protozoan of the disease trichomoniasis, the most prevalent, nonviral sexually transmitted disease in the world. T. vaginalis is a parasite that scavenges nucleosides from the host organism via catalysis by nucleoside hydrolase (NH) enzymes to yield purine and pyrimidine bases. One of the four NH enzymes identified within the genome of T. vaginalis displays unique specificity toward purine nucleosides, adenosine and guanosine, but not inosine, and atypically shares greater sequence similarity to the pyrimidine hydrolases. Bioinformatic analysis of this enzyme, adenosine/guanosine-preferring nucleoside ribohydrolase (AGNH), was incapable of identifying the residues responsible for this uncommon specificity, highlighting the need for structural information. Here, we report the X-ray crystal structures of holo, unliganded AGNH and three additional structures of the enzyme bound to fragment and small-molecule inhibitors. Taken together, these structures facilitated the identification of residue Asp231, which engages in substrate interactions in the absence of those residues that typically support the canonical purine-specific tryptophan-stacking specificity motif. An altered substrate-binding pose is mirrored by repositioning within the protein scaffold of the His80 general acid/base catalyst. The newly defined structure-determined sequence markers allowed the assignment of additional NH orthologs, which are proposed to exhibit the same specificity for adenosine and guanosine alone and further delineate specificity classes for these enzymes.


Asunto(s)
N-Glicosil Hidrolasas , Parásitos , Adenosina/química , Animales , Guanosina , Inosina/metabolismo , N-Glicosil Hidrolasas/química , Parásitos/metabolismo , Pirimidinas , Especificidad por Sustrato
9.
Biochemistry ; 60(46): 3515-3528, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34664940

RESUMEN

Enzymes are categorized into superfamilies by sequence, structural, and mechanistic similarities. The evolutionary implications can be profound. Until the mid-1990s, the approach was fragmented largely due to limited sequence and structural data. However, in 1996, Babbitt et al. published a paper in Biochemistry that demonstrated the potential power of mechanistically diverse superfamilies to identify common ancestry, predict function, and, in some cases, predict specificity. This Perspective describes the findings of the original work and reviews the current understanding of structure and mechanism in the founding family members. The outcomes of the genomic enzymology approach have reached far beyond the functional assignment of members of the enolase superfamily, inspiring the study of superfamilies and the adoption of sequence similarity networks and genome context and yielding fundamental insights into enzyme evolution.


Asunto(s)
Bioquímica/historia , Genómica/historia , Fosfopiruvato Hidratasa/genética , Bioquímica/métodos , Evolución Molecular , Genómica/métodos , Historia del Siglo XX , Fosfopiruvato Hidratasa/historia , Fosfopiruvato Hidratasa/metabolismo , Homología de Secuencia de Aminoácido
10.
Biochemistry ; 60(4): 259-273, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33464876

RESUMEN

In Pseudomonas putida, the flavoprotein nicotine oxidoreductase (NicA2) catalyzes the oxidation of (S)-nicotine to N-methyl-myosmine, which is nonenzymatically hydrolyzed to pseudooxynicotine. Structural analysis reveals a monoamine oxidase (MAO)-like fold with a conserved FAD-binding domain and variable substrate-binding domain. The flavoenzyme has a unique variation of the classic aromatic cage with flanking residue pair W427/N462. Previous mechanistic studies using O2 as the oxidizing substrate show that NicA2 has a low apparent Km of 114 nM for (S)-nicotine with a very low apparent turnover number (kcat of 0.006 s-1). Herein, the mechanism of NicA2 was analyzed by transient kinetics. Single-site variants of W427 and N462 were used to probe the roles of these residues. Although several variants had moderately higher oxidase activity (7-12-fold), their reductive half-reactions using (S)-nicotine were generally significantly slower than that of wild-type NicA2. Notably, the reductive half-reaction of wild-type NicA2 is 5 orders of magnitude faster than the oxidative half-reaction with an apparent pseudo-first-order rate constant for the reaction of oxygen similar to kcat. X-ray crystal structures of the N462V and N462Y/W427Y variants complexed with (S)-nicotine (at 2.7 and 2.3 Å resolution, respectively) revealed no significant active-site rearrangements. A second substrate-binding site was identified in N462Y/W427Y, consistent with observed substrate inhibition. Together, these findings elucidate the mechanism of a flavoenzyme that preferentially oxidizes tertiary amines with an efficient reductive half-reaction and a very slow oxidative half-reaction when O2 is the oxidizing substrate, suggesting that the true oxidizing agent is unknown.


Asunto(s)
Proteínas Bacterianas/química , Nicotina/química , Oxidorreductasas/química , Pseudomonas putida/enzimología , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Cinética , Mutación Missense , Oxidación-Reducción , Oxidorreductasas/genética , Dominios Proteicos , Pseudomonas putida/genética
11.
J Am Chem Soc ; 143(10): 3779-3793, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33683866

RESUMEN

Macrocycles, including macrocyclic peptides, have shown promise for targeting challenging protein-protein interactions (PPIs). One PPI of high interest is between Kelch-like ECH-Associated Protein-1 (KEAP1) and Nuclear Factor (Erythroid-derived 2)-like 2 (Nrf2). Guided by X-ray crystallography, NMR, modeling, and machine learning, we show that the full 20 nM binding affinity of Nrf2 for KEAP1 can be recapitulated in a cyclic 7-mer peptide, c[(D)-ß-homoAla-DPETGE]. This compound was identified from the Nrf2-derived linear peptide GDEETGE (KD = 4.3 µM) solely by optimizing the conformation of the cyclic compound, without changing any KEAP1 interacting residue. X-ray crystal structures were determined for each linear and cyclic peptide variant bound to KEAP1. Despite large variations in affinity, no obvious differences in the conformation of the peptide binding residues or in the interactions they made with KEAP1 were observed. However, analysis of the X-ray structures by machine learning showed that locations of strain in the bound ligand could be identified through patterns of subangstrom distortions from the geometry observed for unstrained linear peptides. We show that optimizing the cyclic peptide affinity was driven partly through conformational preorganization associated with a proline substitution at position 78 and with the geometry of the noninteracting residue Asp77 and partly by decreasing strain in the ETGE motif itself. This approach may have utility in dissecting the trade-off between conformational preorganization and strain in other ligand-receptor systems. We also identify a pair of conserved hydrophobic residues flanking the core DxETGE motif which play a conformational role in facilitating the high-affinity binding of Nrf2 to KEAP1.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Aprendizaje Automático , Factor 2 Relacionado con NF-E2/metabolismo , Péptidos/metabolismo , Secuencias de Aminoácidos , Cristalografía por Rayos X , Ciclización , Polarización de Fluorescencia , Humanos , Enlace de Hidrógeno , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/genética , Mutagénesis Sitio-Dirigida , Factor 2 Relacionado con NF-E2/química , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Unión Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Relación Estructura-Actividad
12.
Biochem Soc Trans ; 49(3): 1189-1203, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34100892

RESUMEN

Phosphoglycosyl transferases (PGTs) play a pivotal role at the inception of complex glycoconjugate biosynthesis pathways across all domains of life. PGTs promote the first membrane-committed step in the en bloc biosynthetic strategy by catalyzing the transfer of a phospho-sugar from a nucleoside diphospho-sugar to a membrane-resident polyprenol phosphate. Studies on the PGTs have been hampered because they are integral membrane proteins, and often prove to be recalcitrant to expression, purification and analysis. However, in recent years exciting new information has been derived on the structures and the mechanisms of PGTs, revealing the existence of two unique superfamilies of PGT enzymes that enact catalysis at the membrane interface. Genome neighborhood analysis shows that these superfamilies, the polytopic PGT (polyPGT) and monotopic PGT (monoPGT), may initiate different pathways within the same organism. Moreover, the same fundamental two-substrate reaction is enacted through two different chemical mechanisms with distinct modes of catalysis. This review highlights the structural and mechanistic divergence between the PGT enzyme superfamilies and how this is reflected in differences in regulation in their varied glycoconjugate biosynthesis pathways.


Asunto(s)
Proteínas Bacterianas/química , Dominio Catalítico , Glicoconjugados/química , Glicosiltransferasas/química , Proteínas de la Membrana/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Conformación de Carbohidratos , Membrana Celular/enzimología , Membrana Celular/metabolismo , Glicoconjugados/biosíntesis , Glicosiltransferasas/metabolismo , Cinética , Proteínas de la Membrana/metabolismo , Modelos Químicos , Conformación Proteica , Especificidad por Sustrato
13.
Proc Natl Acad Sci U S A ; 115(15): E3416-E3425, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581267

RESUMEN

Molecular dynamics (MD) simulations of proteins reveal the existence of many transient surface pockets; however, the factors determining what small subset of these represent druggable or functionally relevant ligand binding sites, called "cryptic sites," are not understood. Here, we examine multiple X-ray structures for a set of proteins with validated cryptic sites, using the computational hot spot identification tool FTMap. The results show that cryptic sites in ligand-free structures generally have a strong binding energy hot spot very close by. As expected, regions around cryptic sites exhibit above-average flexibility, and close to 50% of the proteins studied here have unbound structures that could accommodate the ligand without clashes. Nevertheless, the strong hot spot neighboring each cryptic site is almost always exploited by the bound ligand, suggesting that binding may frequently involve an induced fit component. We additionally evaluated the structural basis for cryptic site formation, by comparing unbound to bound structures. Cryptic sites are most frequently occluded in the unbound structure by intrusion of loops (22.5%), side chains (19.4%), or in some cases entire helices (5.4%), but motions that create sites that are too open can also eliminate pockets (19.4%). The flexibility of cryptic sites frequently leads to missing side chains or loops (12%) that are particularly evident in low resolution crystal structures. An interesting observation is that cryptic sites formed solely by the movement of side chains, or of backbone segments with fewer than five residues, result only in low affinity binding sites with limited use for drug discovery.


Asunto(s)
Proteínas/química , Sitios de Unión , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica
14.
Biochemistry ; 59(35): 3247-3257, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32786412

RESUMEN

Trehalose-6-phosphate phosphatase (T6PP) catalyzes the dephosphorylation of trehalose 6-phosphate (T6P) to the disaccharide trehalose. The enzyme is not present in mammals but is essential to the viability of multiple lower organisms as trehalose is a critical metabolite, and T6P accumulation is toxic. Hence, T6PP is a target for therapeutics of human pathologies caused by bacteria, fungi, and parasitic nematodes. Here, we report the X-ray crystal structures of Salmonella typhimurium T6PP (StT6PP) in its apo form and in complex with the cofactor Mg2+ and the substrate analogue trehalose 6-sulfate (T6S), the product trehalose, or the competitive inhibitor 4-n-octylphenyl α-d-glucopyranoside 6-sulfate (OGS). OGS replaces the substrate phosphoryl group with a sulfate group and the glucosyl ring distal to the sulfate group with an octylphenyl moiety. The structures of these substrate-analogue and product complexes with T6PP show that specificity is conferred via hydrogen bonds to the glucosyl group proximal to the phosphoryl moiety through Glu123, Lys125, and Glu167, conserved in T6PPs from multiple species. The structure of the first-generation inhibitor OGS shows that it retains the substrate-binding interactions observed for the sulfate group and the proximal glucosyl ring. The OGS octylphenyl moiety binds in a unique manner, indicating that this subsite can tolerate various chemotypes. Together, these findings show that these conserved interactions at the proximal glucosyl ring binding site could provide the basis for the development of broad-spectrum therapeutics, whereas variable interactions at the divergent distal subsite could present an opportunity for the design of potent organism-specific therapeutics.


Asunto(s)
Monoéster Fosfórico Hidrolasas/metabolismo , Salmonella typhimurium/enzimología , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Monoéster Fosfórico Hidrolasas/química , Unión Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Especificidad por Sustrato , Fosfatos de Azúcar/química , Trehalosa/química , Trehalosa/metabolismo
15.
Biochemistry ; 59(4): 563-581, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31851823

RESUMEN

Development of small molecule inhibitors of protein-protein interactions (PPIs) is hampered by our poor understanding of the druggability of PPI target sites. Here, we describe the combined application of alanine-scanning mutagenesis, fragment screening, and FTMap computational hot spot mapping to evaluate the energetics and druggability of the highly charged PPI interface between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2), an important drug target. FTMap identifies four binding energy hot spots at the active site. Only two of these are exploited by Nrf2, which alanine scanning of both proteins shows to bind primarily through E79 and E82 interacting with KEAP1 residues S363, R380, R415, R483, and S508. We identify fragment hits and obtain X-ray complex structures for three fragments via crystal soaking using a new crystal form of KEAP1. Combining these results provides a comprehensive and quantitative picture of the origins of binding energy at the interface. Our findings additionally reveal non-native interactions that might be exploited in the design of uncharged synthetic ligands to occupy the same site on KEAP1 that has evolved to bind the highly charged DEETGE binding loop of Nrf2. These include π-stacking with KEAP1 Y525 and interactions at an FTMap-identified hot spot deep in the binding site. Finally, we discuss how the complementary information provided by alanine-scanning mutagenesis, fragment screening, and computational hot spot mapping can be integrated to more comprehensively evaluate PPI druggability.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch/química , Factor 2 Relacionado con NF-E2/química , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Descubrimiento de Drogas , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ligandos , Factor 2 Relacionado con NF-E2/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Dominios Proteicos/efectos de los fármacos , Dominios Proteicos/fisiología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
16.
J Am Chem Soc ; 142(5): 2145-2149, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31923358

RESUMEN

We report the application of lanthanide-binding tags (LBTs) for two- and three-dimensional X-ray imaging of individual proteins in cells with a sub-15 nm beam. The method combines encoded LBTs, which are tags of minimal size (ca. 15-20 amino acids) affording high-affinity lanthanide ion binding, and X-ray fluorescence microscopy (XFM). This approach enables visualization of LBT-tagged proteins while simultaneously measuring the elemental distribution in cells at a spatial resolution necessary for visualizing cell membranes and eukaryotic subcellular organelles.


Asunto(s)
Imagenología Tridimensional/métodos , Elementos de la Serie de los Lantanoides/metabolismo , Proteínas/química , Espectrometría por Rayos X/métodos , Secuencia de Aminoácidos , Unión Proteica
17.
Nat Chem Biol ; 14(6): 538-541, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29769739

RESUMEN

Polyprenol phosphate phosphoglycosyl transferases (PGTs) catalyze the first membrane-committed step in assembly of essential glycoconjugates. Currently there is no structure-function information to describe how monotopic PGTs coordinate the reaction between membrane-embedded and soluble substrates. We describe the structure and mode of membrane association of PglC, a PGT from Campylobacter concisus. The structure reveals a unique architecture, provides mechanistic insight and identifies ligand-binding determinants for PglC and the monotopic PGT superfamily.


Asunto(s)
Campylobacter/enzimología , Membrana Celular/enzimología , Glicosiltransferasas/química , Fosfatos/química , Catálisis , Dominio Catalítico , Clonación Molecular , Cisteína/química , Glicoconjugados/química , Ligandos , Mutación , Fosforilación , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
18.
Biochemistry ; 58(26): 2906-2920, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31145594

RESUMEN

NF-κB essential modulator (NEMO) regulates NF-κB signaling by acting as a scaffold for the kinase IKKß to direct its activity toward the NF-κB inhibitor, IκBα. Here, we show that a highly conserved central region of NEMO termed the intervening domain (IVD, amino acids 112-195) plays a key role in NEMO function. We determined a structural model of full-length NEMO by small-angle X-ray scattering and show that full-length, wild-type NEMO becomes more compact upon binding of a peptide comprising the NEMO binding domain of IKKß (amino acids 701-745). Mutation of conserved IVD residues (9SG-NEMO) disrupts this conformational change in NEMO and abolishes the ability of NEMO to propagate NF-κB signaling in cells, although the affinity of 9SG-NEMO for IKKß compared to that of the wild type is unchanged. On the basis of these results, we propose a model in which the IVD is required for a conformational change in NEMO that is necessary for its ability to direct phosphorylation of IκBα by IKKß. Our findings suggest a molecular explanation for certain disease-associated mutations within the IVD and provide insight into the role of conformational change in signaling scaffold proteins.


Asunto(s)
Quinasa I-kappa B/metabolismo , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Quinasa I-kappa B/química , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Transducción de Señal , Difracción de Rayos X
19.
Biochemistry ; 57(30): 4504-4517, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29952545

RESUMEN

α-Phosphoglucomutase (αPGM), in its phosphorylated state, catalyzes the interconversion of α-d-glucose 1-phosphate and α-d-glucose 6-phosphate. The αPGM of Lactococcus lactis is a type C2B member of the haloalkanoic acid dehalogenase (HAD) enzyme family and is comprised of a Rossmann-fold catalytic domain and inserted α/ß-fold cap domain. The active site is formed at the domain-domain interface. Herein, we report the results from a kinetic-based study of L. lactis αPGM catalysis, which demonstrate enzyme activation by autocatalyzed phosphorylation of Asp8 with αG1P, the intermediacy of αG1,6bisP in the phospho Ll-αPGM-catalyzed conversion of αG1P to G6P, and the reorientation of the αG1,6bisP intermediate via dissociation to solvent and rebinding. In order to provide insight into the structural determinants of L. lactis αPGM substrate recognition and catalysis, metal cofactor and substrate specificities were determined as were the contributions made by active-site residues toward catalytic efficiency. Lastly, the structure and catalytic mechanism of L. lactis αPGM are compared with those of HAD family phosphomutases L. lactis ß-phosphoglucomutase and eukayotic α-phosphomannomutase to provide insight into the evolution of phosphohexomutases from HAD family phosphatases.


Asunto(s)
Lactococcus lactis/enzimología , Fosfoglucomutasa/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Glucosa-6-Fosfato/metabolismo , Glucofosfatos/metabolismo , Cinética , Lactococcus lactis/química , Lactococcus lactis/metabolismo , Modelos Moleculares , Fosfoglucomutasa/química , Fosforilación , Conformación Proteica , Especificidad por Sustrato
20.
Biochemistry ; 57(25): 3480-3492, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29695157

RESUMEN

The human phosphomannomutases PMM1 and PMM2 catalyze the interconversion of hexose 6-phosphates and hexose 1-phosphates. The two isoforms share 66% sequence identity and have kinetic properties similar to those of mutases in vitro but differ in their functional roles in vivo. Though the physiological role of PMM2 is catalysis of the mutase reaction that provides the mannose 1-phosphate (Man-1-P) essential for protein glycosylation, PMM1 is thought to provide a phosphohydrolase activity in the presence of inosine monophosphate (IMP), converting glucose 1,6-bisphosphate (Glu-1,6-P2) to glucose 6-phosphate (Glu-6-P), rescuing glycolysis during brain ischemia. To uncover the structural basis of how IMP binding converts PMM1 from a mutase to a phosphatase, the 1.93 Å resolution structure of PMM1 complexed with IMP was determined. The structure reveals IMP bound at the substrate recruitment site, thus inhibiting the mutase activity while simultaneously activating a phosphatase activity (IMP Kact = 1.5 µM) resulting from the hydrolysis of the phospho-enzyme. The bound structure and site-directed mutagenesis confirm that the long-range electrostatic interactions provided by Arg180 and Arg183 conserved in PMM1 are the major contributors to IMP binding, and their oblation removes phosphatase but not mutase activity. These residues are not present in the PMM2 isoform, which consequently lacks significant phosphatase activity in the presence of IMP. T2 relaxation nuclear magnetic resonance and small angle X-ray scattering together support the hypothesis that binding of IMP to PMM1 favors an enzyme conformation that is catalytically competent for water attack at the phosphoaspartyl intermediate. Such a mechanism may be generalizable to other enzymes that act through covalent intermediates.


Asunto(s)
Inosina Monofosfato/metabolismo , Fosfotransferasas (Fosfomutasas)/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Isquemia Encefálica/metabolismo , Cristalografía por Rayos X , Glucólisis , Humanos , Modelos Moleculares , Fosfotransferasas (Fosfomutasas)/química , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA